首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
研究了Fe73.5Cu1Nb3Si13.5B^9非晶薄带磁感应效应和磁感应效应变化幅度的影响因素。结果表明:当励磁信号为正弦交流电时,线圈感应电压也为同频率的正弦交流电压,当励磁信号为矩形电压时,线圈感应电压则为同频率的尖脉冲电压。磁感应效应随着励磁电压幅值的增大而增强;随着磁场强度和限流电阻的增大而减弱。磁感应效应变化幅度随着磁场强度和励磁电压幅值的增大而增大;随着限流电阻的增大呈现出先增大后减小的趋势。  相似文献   

2.
研究限流电阻对Fe73.5Cu1Nb3Si13.5B9非晶薄带的磁感应效应及磁感应效应变化幅度的影响.结果 表明:非晶薄带的磁感应效应随着限流电阻的增大而减弱;当限流电阻小于100 Ω时,非晶薄带的磁感应效应变化幅度随着限流电阻的增大而增大,当限流电阻大于100Ω时,非晶薄带的磁感应效应变化幅度随着限流电阻的增大而减小.  相似文献   

3.
研究限流电阻对Fe73.5Cu1Nb3Si13.5B9山非晶薄带的磁感应效应及磁感应效应变化幅度的影响。结果表明:非晶薄带的磁感应效应随着限流电阻的增大而减弱;当限流电阻小于100Ω时,非晶薄带的磁感应效应变化幅度随着限流电阻的增大而增大,当限流电阻大于100Ω时,非晶薄带的磁感应效应变化幅度随着限流电阻的增大而减小。  相似文献   

4.
研究了频率、磁场强度对Fe78Si9B13非晶薄带的磁感应效应及磁感应效应变化幅度的影响.结果 表明:磁感应效应随着频率的升高而增强,随着磁场强度的增大而减弱;磁感应效应变化幅度随着磁场强度的增大而增大,当频率低于30kHz时,磁感应效应变化幅度随着频率的升高而增大,当频率高于30kHz时,磁感应效应变化幅度随着频率的升高而减小.  相似文献   

5.
研究了频率、磁场强度对Fe78Si9B13非晶薄带的磁感应效应及磁感应效应变化幅度的影响。结果表明:磁感应效应随着频率的升高而增强,随着磁场强度的增大而减弱;磁感应效应变化幅度随着磁场强度的增大而增大,当频率低于30kHz时,磁感应效应变化幅度随着频率的升高而增大,当频率高于30kHz时,磁感应效应变化幅度随着频率的升高而减小。  相似文献   

6.
研究了频率、磁场对Fe73.5Cu1Nb3Si13.5B9非晶薄带的磁感应效应及磁感应效应变化幅度的影响。结果表明:非晶薄带的磁感应效应随着频率的升高而增强,随着磁场的增强而减弱;非晶薄带的磁感应效应变化幅度随着磁场的增强而增大,当频率低于30 kHz时,非晶薄带的磁感应效应变化幅度随着频率的升高而增大,当频率高于30 kHz时,非晶薄带的磁感应效应变化幅度随着频率的升高而减小。  相似文献   

7.
研究了频率、磁场对Fe73.5Cu1Nb3Si13.5B9非晶薄带的磁感应效应及磁感应效应变化幅度的影响。结果表明:非晶薄带的磁感应效应随着频率的升高而增强,随着磁场的增强而减弱;非晶薄带的磁感应效应变化幅度随着磁场的增强而增大,当频率低于30 kHz时,非晶薄带的磁感应效应变化幅度随着频率的升高而增大,当频率高于30 kHz时,非晶薄带的磁感应效应变化幅度随着频率的升高而减小。  相似文献   

8.
研究了频率、磁场强度、线圈匝数、薄带长度以及退火对Fe78Si9B13非晶薄带的磁阻抗效应的影响.结果表明:非晶薄带的阻抗随着频率的升高和线圈匝数的增多而增大,随着磁场强度和薄带长度的增大而减小;非晶薄带的阻抗变化幅度随着频率的升高、磁场强度的增大和线圈匝数的增多而增大,随着薄带长度的增大而减小;退火可以提高非晶薄带的磁阻抗效应.  相似文献   

9.
为了解决电磁阻尼耦合悬架因非线性振动机理复杂而存在机电耦合系数匹配困难,制约其在汽车领域中推广应用的问题,建立电磁悬架机电耦合动力学模型,推导悬架与电磁电路动力学微分方程,应用多尺度法,得到耦合系统中悬架与电路系统固有频率之比为1∶3时的内共振幅频方程和内共振一次近似解。结果表明:在调节电阻值接近线圈固有电阻的前提下,保持其他参数不变,分别改变线圈固有电感、电路电压以及外界激励幅值、频率的数值,会对悬架及电量的幅频响应曲线峰值产生不同影响;悬架的幅频响应曲线峰值随着线圈固有电感和电路电压的增大而减小,随着外界激励幅值与频率的减小而减小;电量的幅频响应曲线峰值随着外界激励幅值与频率的增大而增大,随着电路电压的减小而增大。  相似文献   

10.
分析了匝间无绝缘的超导磁体线圈的结构,主要测试了线圈总层数和每层匝数对其等效总电阻的影响以及线圈的励磁退磁性能.实验结果表明:当总层数为奇数和偶数时,等效总电阻的变化趋势完全不同,但量级均为相邻匝间接触电阻的几倍.等效总电阻大小直接影响着线圈的励磁、退磁过程.线圈总电阻越大,则励磁时间越短,但同时感应电压也越大,焦耳热也会增加.所以,对于无绝缘超导磁体线圈的设计,选择合适的线圈等效总电阻及匝间的无绝缘填充材料尤为重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号