首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
"伽利略"探测器在经过大约36亿公里和长达6年多的空间旅行后,于1995年7月到达木星轨道,并将其携带的木星大气探测器以预定的角度送入木星大气层,顺利地完成了飞向木星的艰难任务,同时开始了对木星进行的为期两年的探测活动。 "伽利略"探测器向木星发射的木星大气探测器,重339公斤,于12月7日飞进环境恶劣、飞速旋转的木星大气层,执行一项有去无回的探测任务,首  相似文献   

2.
离子回旋频段内热等离子体介电张量研究   总被引:1,自引:0,他引:1  
给出了离子回旋频段内冷等离子体和热等离子体介电张量表达式,计算得到了其分布,并进行了对比.结果表明:热等离子体更能反映托卡马克等离子体的介电性质,在托卡马克离子回旋波电流驱动的相关研究中应尽量采用热等离子体模型.  相似文献   

3.
在无磁场的尘埃等离子体中 ,由冷的尘埃颗粒和热的电子和离子组成的尘埃等离子体 ,对于有限的小振幅的非线性波的运动可以用KdV方程描述 .对由 2种不同温度离子的尘埃等离子体中的弱二维尘埃声波 ,得到了它所满足的KP方程 .并且发现 ,在横向扰动下 ,弱的非线性孤立波在尘埃等离子体中是稳定的 .在这个系统中既存在压缩孤立波又存在稀疏孤立波  相似文献   

4.
采用Vlasov-Poisson数值模拟方法,研究了非均匀离子背景下、大范围变化的电子密度扰动振幅对冷等离子体振荡过程的影响,得到了波破裂发生时相空间的电子分布情况.当电子密度扰动较小时,电子等离子体波的影响较小,波破裂主要由背景离子的不均匀性引起.电子密度扰动中等大小时,电子等离子体波导致的波破裂发生在早期阶段,但比...  相似文献   

5.
“伽利略”飞船拍摄了许多“木卫一”火山爆发的照片,并且找到“木卫二”冰层下面似乎有很多液态水和稀薄氧气层的证据。这些证据使科学家们相信在太阳系中,“木卫二”很可能有生命存在。“伽利略”飞船还曾经探索过“木卫三”,发现这颗卫星有自己的磁场。美国宇航局探索木星的“伽利略”飞船开始最后一次飞行, 9月21日,飞船将俯冲奔向木星,与空气摩擦燃烧,最后化为灰烬,消失在木星周围的大气层里。“伽利略”飞船燃料即将耗尽,在完成最后的飞行之后,不能调整自己的轨道,也不能使天线转向地球,只有消失在木星的大气层里。这样的…  相似文献   

6.
采用氧冷等离子体处理中密度纤维板,贴面后测定其不同氧冷等离子体处理条件下的甲醛释放量,并探讨氧冷等离子体处理降低饰面中密度纤维板甲醛释放量的机制。结果表明:经氧冷等离子体处理后,饰面中密度纤维板甲醛释放量显著下降,下降率最大达33.14%。氧冷等离子体处理降低饰面中密度纤维板甲醛释放量的机制主要有:饰面中密度纤维板经氧冷等离子体处理后,表面结合强度增大,增强了饰面材料对基材的封闭作用,减少了基材中甲醛对外释放的通道;氧冷等离子体改性过程中的抽真空工艺会使基材中部分游离甲醛被吸出,从而使贴面后的产品甲醛释放量有所下降;氧冷等离子体处理时产生的高能粒子及活性基团对甲醛具有分解作用。  相似文献   

7.
发生于1994年7月17—22日的苏梅克—列维9号彗星撞击木星引起了世人的瞩目。这一撞击过程将为天体学界研究木星的大气层和内部结构提供的有力证据,也为研究天体撞击过程,特别是地外物体撞击地球提供第一手资料。但对大多数人来说,最为关心的是彗木撞击作用对木星的影响和假如苏—列彗星撞击地球,地表环境可能发生的变化。下面利用我们研究小组对地  相似文献   

8.
科技视野     
德美研究证实木星存在很小粒子木星环德国马普太阳系研究所、德国马普核物理研究所和美国马里兰大学研究人员共同研究发现,太阳系中不仅土星存在围绕自身旋转的由尘埃粒子组成的环,木星也存在相应旋转的环,其直径约64万公里。研究人员还首次直接测到了木星尘埃粒子的大小,发现其平均大小只有千分之一毫米,相当于抽烟时冒出的烟雾颗  相似文献   

9.
为了研究等离子体射流环量控制对翼型气动特性的作用机理、影响规律和控制效费比,基于等效体积力耦合雷诺平均N-S方程的数值计算方法进行仿真,研究了不同后缘半径、单组激励器位置及双组激励器布置方式对翼型气动特性和流场特性的影响规律。结果显示中等后缘半径,两组激励器反向对称布置在上下翼面优化位置时,环量控制效费比有显著提升。研究表明中等后缘半径翼型的后缘流体离心力和压力梯度相对平衡,等离子体射流带动上翼面外流发生偏折,增升效果较好。优化后双组激励器作用形成了等离子体射流的串联,有效诱导脱体尾涡向下翼面移动,分离点下移,环量和升力增加明显。研究结果为后续实验研究提供了理论基础。  相似文献   

10.
王博 《科技信息》2009,(18):334-335
离子发动机是一种新型的发动机,一定压力的气体进入电离室,在高频振荡电流的作用下,使少量的自由电子与室壁碰撞产生二次电子,电子与气体碰撞而引发电离,产生等离子体。在负电位的吸引下,使离子束引出同时进入直线加速器,通过多级加速电极,使离子柬的速度达到所需的速度,再由喷管喷出,产生推力,或直接从外界收集离子作为工质,进行加速。  相似文献   

11.
Mendillo M  Laurent S  Wilson J  Baumgardner J  Konrad J  Karl WC 《Nature》2007,448(7151):330-332
On Jupiter's moon Io, volcanic plumes and evaporating lava flows provide hot gases to form an atmosphere that is subsequently ionized. Some of Io's plasma is captured by the planet's strong magnetic field to form a co-rotating torus at Io's distance; the remaining ions and electrons form Io's ionosphere. The torus and ionosphere are also depleted by three time-variable processes that produce a banana-shaped cloud orbiting with Io, a giant nebula extending out to about 500 Jupiter radii, and a jet close to Io. No spatial constraints exist for the sources of the first two; they have been inferred only from modelling the patterns seen in the trace gas sodium observed far from Io. Here we report observations that reveal a spatially confined stream that ejects sodium only from the wake of the Io-torus interaction, together with a visually distinct, spherically symmetrical outflow region arising from atmospheric sputtering. The spatial extent of the ionospheric wake that feeds the stream is more than twice that observed by the Galileo spacecraft and modelled successfully. This implies considerable variability, and therefore the need for additional modelling of volcanically-driven, episodic states of the great jovian nebula.  相似文献   

12.
The space environments--or magnetospheres--of magnetized planets emit copious quantities of energetic neutral atoms (ENAs) at energies between tens of electron volts to hundreds of kiloelectron volts (keV). These energetic atoms result from charge exchange between magnetically trapped energetic ions and cold neutral atoms, and they carry significant amounts of energy and mass from the magnetospheres. Imaging their distribution allows us to investigate the structure of planetary magnetospheres. Here we report the analysis of 50-80 keV ENA images of Jupiter's magnetosphere, where two distinct emission regions dominate: the upper atmosphere of Jupiter itself, and a torus of emission residing just outside the orbit of Jupiter's satellite Europa. The trans-Europa component shows that, unexpectedly, Europa generates a gas cloud comparable in gas content to that associated with the volcanic moon Io. The quantity of gas found indicates that Europa has a much greater impact than hitherto believed on the structure of, and the energy flow within, Jupiter's magnetosphere.  相似文献   

13.
The atmosphere of Jupiter's satellite Io is extremely tenuous, time variable and spatially heterogeneous. Only a few molecules--SO2, SO and S2--have previously been identified as constituents of this atmosphere, and possible sources include frost sublimation, surface sputtering and active volcanism. Io has been known for almost 30 years to be surrounded by a cloud of Na, which requires an as yet unidentified atmospheric source of sodium. Sodium chloride has been recently proposed as an important atmospheric constituent, based on the detection of chlorine in Io's plasma torus and models of Io's volcanic gases. Here we report the detection of NaCl in Io's atmosphere; it constitutes only approximately 0.3% when averaged over the entire disk, but is probably restricted to smaller regions than SO2 because of its rapid photolysis and surface condensation. Although the inferred abundance of NaCl in volcanic gases is lower than predicted, those volcanic emissions provide an important source of Na and Cl in Io's neutral clouds and plasma torus.  相似文献   

14.
Rotating at over twice the angular speed of Earth, Saturn imposes a rapid spin on its magnetosphere. As a result, cold, dense plasma is believed to be flung outward from the inner magnetosphere by centrifugal force and replaced by hotter, more tenuous plasma from the outer magnetosphere. The centrifugal interchange of plasmas in rotating magnetospheres was predicted many years ago and was conclusively demonstrated by observations in Jupiter's magnetosphere, which--like that of Saturn (but unlike that of Earth)--is rotationally dominated. Recent observations in Saturn's magnetosphere have revealed narrow injections of hot, tenuous plasma believed to be the inward-moving portion of the centrifugal interchange cycle. Here we report observations of the distribution of the angle between the electron velocity vector and the magnetic field vector ('pitch angle') obtained in the cold, dense plasma adjacent to these inward injection regions. The observed pitch-angle distributions are indicative of outward plasma flow and consistent with centrifugal interchange in Saturn's magnetosphere. Further, we conclude that the observed double-peaked ('butterfly') pitch-angle distributions result from the transport of plasma from regions near the orbits of Dione and Tethys, supporting the idea of distinct plasma tori associated with these moons.  相似文献   

15.
Io leaves a magnetic footprint on Jupiter's upper atmosphere that appears as a spot of ultraviolet emission that remains fixed underneath Io as Jupiter rotates. The specific physical mechanisms responsible for generating those emissions are not well understood, but in general the spot seems to arise because of an electromagnetic interaction between Jupiter's magnetic field and the plasma surrounding Io, driving currents of around 1 million amperes down through Jupiter's ionosphere. The other galilean satellites may also leave footprints, and the presence or absence of such footprints should illuminate the underlying physical mechanism by revealing the strengths of the currents linking the satellites to Jupiter. Here we report persistent, faint, far-ultraviolet emission from the jovian footprints of Ganymede and Europa. We also show that Io's magnetic footprint extends well beyond the immediate vicinity of Io's flux-tube interaction with Jupiter, and much farther than predicted theoretically; the emission persists for several hours downstream. We infer from these data that Ganymede and Europa have persistent interactions with Jupiter's magnetic field despite their thin atmospheres.  相似文献   

16.
Planetary aurorae are formed by energetic charged particles streaming along the planet's magnetic field lines into the upper atmosphere from the surrounding space environment. Earth's main auroral oval is formed through interactions with the solar wind, whereas that at Jupiter is formed through interactions with plasma from the moon Io inside its magnetic field (although other processes form aurorae at both planets). At Saturn, only the main auroral oval has previously been observed and there remains much debate over its origin. Here we report the discovery of a secondary oval at Saturn that is approximately 25 per cent as bright as the main oval, and we show this to be caused by interaction with the middle magnetosphere around the planet. This is a weak equivalent of Jupiter's main oval, its relative dimness being due to the lack of as large a source of ions as Jupiter's volcanic moon Io. This result suggests that differences seen in the auroral emissions from Saturn and Jupiter are due to scaling differences in the conditions at each of these two planets, whereas the underlying formation processes are the same.  相似文献   

17.
Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown. Here we report the discovery by the Cassini spacecraft of a fast (>103[?]km[?]s-1) and hot magnetospheric neutral wind extending more than 0.5[?]au from Jupiter, and the presence of energetic neutral atoms (both hot and cold) that have been accelerated by the electric field in the solar wind. We suggest that these atoms originate in volcanic gases from Io, undergo significant evolution through various electromagnetic interactions, escape Jupiter's magnetosphere and then populate the environment around the planet. Thus a 'nebula' is created that extends outwards over hundreds of jovian radii.  相似文献   

18.
Io as a source of the jovian dust streams   总被引:1,自引:0,他引:1  
Graps AL  Grun E  Svedhem H  Kruger H  Horanyl M  Heck A  Lammers S 《Nature》2000,405(6782):48-50
Streams of dust emerging from the direction of Jupiter were discovered in 1992 during the flyby of the Ulysses spacecraft, but their precise origin within the jovian system remained unclear. Further data collected by the Galileo spacecraft, which has been orbiting Jupiter since December 1995, identified the possible sources of dust as Jupiter's main ring, its gossamer ring, comet Shoemaker-Levy 9 (ref. 8) and Io. All but Jupiter's gossamer ring and Io have since been ruled out. Here we find that the dominant source of the jovian dust streams is Io, on the basis of periodicities in the dust impact signal. Io's volcanoes, rather than impact ejecta, are the dust sources.  相似文献   

19.
An intense stratospheric jet on Jupiter   总被引:1,自引:0,他引:1  
The Earth's equatorial stratosphere shows oscillations in which the east-west winds reverse direction and the temperatures change cyclically with a period of about two years. This phenomenon, called the quasi-biennial oscillation, also affects the dynamics of the mid- and high-latitude stratosphere and weather in the lower atmosphere. Ground-based observations have suggested that similar temperature oscillations (with a 4-5-yr cycle) occur on Jupiter, but these data suffer from poor vertical resolution and Jupiter's stratospheric wind velocities have not yet been determined. Here we report maps of temperatures and winds with high spatial resolution, obtained from spacecraft measurements of infrared spectra of Jupiter's stratosphere. We find an intense, high-altitude equatorial jet with a speed of approximately 140 m s(-1), whose spatial structure resembles that of a quasi-quadrennial oscillation. Wave activity in the stratosphere also appears analogous to that occurring on Earth. A strong interaction between Jupiter and its plasma environment produces hot spots in its upper atmosphere and stratosphere near its poles, and the temperature maps define the penetration of the hot spots into the stratosphere.  相似文献   

20.
Most visible matter in the Universe exists as plasma. How this plasma is heated, and especially how the initial non-equilibrium plasma distributions relax to thermal equilibrium (as predicted by Maxwell-Boltzman statistics), is a fundamental question in studies of astrophysical and laboratory plasmas. Astrophysical plasmas are often so tenuous that binary collisions can be ignored, and it is not clear how thermal equilibrium develops for these 'collisionless' plasmas. One example of a collisionless plasma is the Earth's plasma sheet, where thermalized hot plasma with ion temperatures of about 5 x 10(7) K has been observed. Here we report direct observations of a plasma distribution function during a solar eclipse, revealing cold ions in the Earth's plasma sheet in coexistence with thermalized hot ions. This cold component cannot be detected by plasma sensors on satellites that are positively charged in sunlight, but our observations in the Earth's shadow show that the density of the cold ions is comparable to that of hot ions. This high density is difficult to explain within existing theories, as it requires a mechanism that permits half of the source plasma to remain cold upon entry into the hot turbulent plasma sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号