首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
A facile one-step strategy involving the reaction of antimony chloride with thioacetamide at room temperature is successfully developed for the synthesis of strongly coupled amorphous Sb2S3 spheres and carbon nanotubes (CNTs). Benefiting from the unique amorphous structure and its strongly coupled effect with the conductive network of CNTs, this hybrid electrode (Sb2S3@CNTs) exhibits remarkable sodium and lithium storage properties with high capacity, good cyclability, and prominent rate capability. For sodium storage, a high capacity of 814 mAh·g?1 at 50 mA·g?1 is delivered by the electrode, and a capacity of 732 mAh·g?1 can still be obtained after 110 cycles. Even up to 2000 mA·g?1, a specific capacity of 584 mAh·g?1 can be achieved. For lithium storage, the electrode exhibits high capacities of 1136 and 704 mAh·g?1 at 100 and 2000 mA·g?1, respectively. Moreover, the cell holds a capacity of 1104 mAh·g?1 under 100 mA·g?1 over 110 cycles. Simple preparation and remarkable electrochemical properties make the Sb2S3@CNTs electrode a promising anode for both sodium-ion (SIBs) and lithium-ion batteries (LIBs).  相似文献   

2.
Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability:at a current density of 0.2C (1.0C=170 mA·g?1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g?1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99%after 10 cycles;moreover, the materi-als can retain a specific capacity of 135.68 mAh·g?1, even at 2C.  相似文献   

3.
The synthesis process of LiCo0.3Ni0.7O2 was investigated by FT-IR, mass spectroscopy, elemental analysis, SEM, BET, TG/DTA and XRD in this paper. The results revealed that lithium and transition metal ions were trapped homogeneously on an atomic scale throughout the precursor. Li2CO3, NiO and CoO are the intermediate products obtained after decomposition of the precursor and Li2CO3 undergoes direct reactions with NiO and CoO to form LiCo0.3Ni0.7O2. Moreover, the kinetics of formation of LiCo0.3Ni0.7O2 by dtrate sol-gel method is faster than the case of the conventional solid-state reaction between lithium carbonate and corresponding reactants. The single phase of LiCo0.3Ni0.7O2 was synthesized at temperature as low as 550℃. The discharge capacity of LiCo0.3Ni0.7O2 increases from 127 to 185 mAh/g as the caldnation temperature increasing from 550 to 750℃. After 100 cycles, the discharge capacity of the sample calcined at 750℃ is 155 mAh/g. The electrochemical study shows that the LiCo0.3Ni0.7O2 has high discharge capacity and good cycling behavior for lithium ion batteries.  相似文献   

4.
Hierarchical porous metal oxides arrays is critical for development of advanced energy storage devices. Herein, we report a facile template-assisted electro-deposition plus glucose decomposition method for synthesis of multilayer CoO/C hollow spheres arrays. The CoO/C arrays consist of multilayer interconnected hollow composite spheres with diameters of ~350 nm as well as thin walls of ~20 nm. Hierarchical hollow spheres architecture with 3D porous networks are achieved. As cathode of high-rate hybrid batteries, the multilayer CoO/C hollow sphere arrays exhibit impressive enhanced performances with a high capacity (73.5 mAh g?1 at 2 A g?1), and stable high-rate cycling life (70 mAh g?1 after 12,500 cycles at 2 A g?1). The improved electrochemical performance is owing to the composite hollow-sphere architecture with high contact area between the active materials and electrolyte as well as fast ion/electron transportation path.  相似文献   

5.
Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C (1.0C = 170 mA·g-1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g-1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mAh·g-1, even at 2C.  相似文献   

6.
Pt/CeO2–C catalysts with CeO2 pre-calcined at 300–600°C were synthesized by combining hydrothermal calcination and wet impregnation. The effects of the pre-calcined CeO2 on the performance of Pt/CeO2–C catalysts in methanol oxidation were investigated. The Pt/CeO2–C catalysts with pre-calcined CeO2 at 300–600°C showed an average particle size of 2.6–2.9 nm and exhibited better methanol electro-oxidation catalytic activity than the commercial Pt/C catalyst. In specific, the Pt/CeO2–C catalysts with pre-calcined CeO2 at 400°C displayed the highest electrochemical surface area value of 68.14 m2·g?1 and If/Ib ratio (the ratio of the forward scanning peak current density (If) and the backward scanning peak current density (Ib)) of 1.26, which are considerably larger than those (53.23 m2·g?1 and 0.79, respectively) of the commercial Pt/C catalyst, implying greatly enhanced CO tolerance.  相似文献   

7.
We report the electrochemical performance of Ni(OH)2 on a gas diffusion layer (GDL). The Ni(OH)2 working electrode was successfully prepared via a simple method, and its electrochemical performance in 1 M NaOH electrolyte was investigated. The electrochemical results showed that the Ni(OH)2/GDL provided the maximum specific capacitance value (418.11 F·g?1) at 1 A·g?1. Furthermore, the Ni(OH)2 electrode delivered a high specific energy of 17.25 Wh·kg?1 at a specific power of 272.5 W·kg?1 and retained about 81% of the capacitance after 1000 cycles of galvanostatic charge–discharge (GCD) measurements. The results of scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed the occurrence of sodium deposition after long-time cycling, which caused the reduction in the specific capacitance. This study results suggest that the light-weight GDL, which can help overcome the problem of the oxide layer on metal–foam substrates, is a promising current collector to be used with Ni-based electroactive materials for energy storage applications.  相似文献   

8.
Urchin-like Sn–ZnO–C composite have been successfully prepared by thermal annealing of ZnSn(OH)6precursor in acetylene/argon gas(1/9;v/v).The phase of the urchin-like Sn–ZnO–C has been characterized by X-ray diffraction(XRD)and Raman spectrum.The images of scanning electron microscopy(SEM)and transmission electron microscope(TEM)demonstrate that the Sn–ZnO–C composite with an average of 3 lm in diameter is composed of many core–shell nanowires and carbon nanotubes emanated from the center.The thermal annealing temperature and time have crucial effects on the formation of urchin-like structure and carbon content of the Sn–ZnO–C composites.As an anode for lithium-ion batteries,the urchin-like Sn–ZnO–C composite delivers a discharge capacity of 1,034.5 mAh/g in initial cycle and 571.9 mAh/g reversible discharge capacity after 25 cycles at a current density of 50 mA/g.The superior energy storage properties highlight the urchin-like Sn–ZnO–C composite as a potential alternative anode material in lithium-ion batteries.  相似文献   

9.
Sulfur is an advantageous material as a promising next-generation positive electrode material for high-energy lithium batteries due to a high theoretical capacity of 1672 m A h g 1although its discharge potential is somewhat modest:ca.2 V vs Li/Lit.However,a sulfur positive electrode has some crucial problems for practical use,which are mainly attributed to the dissolution of its intermediate products in charge–discharge processes.In order to resolve the dissolution problem of lithium polysulfide,we attempted to synthesize a sulfur–microporous activated carbon(AC) composite positive electrode.Moreover,we have systematically researched the battery performance of sulfur–microporous AC positive electrode with variations of electrolytes as well as negative electrodes,and found its promising positive electrode performance for a nextgeneration rechargeable battery.  相似文献   

10.
Lithium-air(Li-air) batteries have attracted worldwide attention due to their high energy density(11140 Wh kg-1) comparable to gasoline.In this work,we have synthesized the α-MnO2 hollow clews via a simple method and characterized them by X-ray diffraction and scanning electron microscope.Interestingly,cycle performance of Li-air batteries is improved greatly when using the α-MnO2 hollow clews as the catalyst.The first discharge capacity is 596 mAh g-1,and the charge capacity is 590 mAh g-1 at the current density of 0.1 mA cm-2 between 2.0 and 4.2 V using the Vulcan XC-72 as the carbon material.Additionally,by re-assembling new batteries with the used lithium foil,separators and cathode separately,we find that the cathode is the key role to end the Li-air battery life.  相似文献   

11.
The commercial development of lithium–sulfur batteries (Li–S) is severely limited by the shuttle effect of lithium polysulfides (LPSs) and the non-conductivity of sulfur. Herein, porous g-C3N4 nanotubes (PCNNTs) are synthesized via a self-template method and util-ized as an efficient sulfur host material. The one-dimensional PCNNTs have a high specific surface area (143.47 m2·g?1) and an abundance of macro-/mesopores, which could achieve a high sulfur loading rate of 74.7wt%. A Li–S battery bearing the PCNNTs/S composite as a cathode displays a low capacity decay of 0.021% per cycle over 800 cycles at 0.5 C with an initial capacity of 704.8 mAh·g?1. PCNNTs with a tubular structure could alleviate the volume expansion caused by sulfur and lithium sulfide during charge/discharge cycling. High N contents could greatly enhance the adsorption capacity of the carbon nitride for LPSs. These synergistic effects contribute to the excellent cycling stability and rate performance of the PCNNTs/S composite electrode.  相似文献   

12.
以K2SnO3为原料,采用简单的水热反应,通过基于静电引力的自组装机制,制得石墨烯包覆SnO2空心球的复合材料.采用SEM、TEM、XRD、N2吸附等温线研究了复合材料的形貌和结构;采用电化学方法研究了复合材料的锂离子电池负极性能.结果表明,复合材料为石墨烯包覆的直径约200~300nm的SnO2空心球,比表面积为140.1 m2·g-1.当放电电流密度为158m A·g-1时,充电比容量为425 mAh·g-1,库伦效率保持为92%以上,复合材料具有良好的循环性能.  相似文献   

13.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

14.
采用水热法在不同碱性条件下制备了不同形貌结构的SnO2和SnO纳米材料,研究了两类锡基氧化物作为锂离子电池负极材料的储锂性能. 结果表明: SnCl2·2H2O直接水热水解或在碱性较弱时生成SnO2,当碱性较强(pH>13)时则生成纳米SnO; 与SnO2相比,SnO因其特殊的交叉网状花簇结构,表现出较高的首次充电、放电容量(1 059、1 590 mAh/g,库伦效率66.6%)、循环稳定性(循环500次,可逆容量达315 mAh/g)和倍率稳定性(在2.0 A/g下的可逆容量达到548 mAh/g). 碱性越强,SnO2的循环稳定性和倍率稳定性越好,这归因于碱性越强生成的SnO2颗粒越小,增大了电解液与电极材料的接触面积,缩短了Li+的传输距离,提高了循环稳定性和倍率稳定性. 研究结果为寻找长寿命、高容量负极材料的应用提供了参考.  相似文献   

15.
Anion-immobilized solid composite electrolytes (SCEs) are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries (ASSLMBs). Herein, a novel SCEs based on metal-organic frameworks (MOFs, UiO-66-NH2) and superacid ZrO2 (S-ZrO2) fillers are proposed, and the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), thermo-gravimetric analyzer (TGA) and some other electrochemical measurements. The –NH2 groups of UiO-66-NH2 combines with F atoms of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) chains by hydrogen bonds, leading to a high electrochemical stability window of 5 V. Owing to the incorporation of UiO-66-NH2 and S-ZrO2 in PVDF-HFP polymer, the open met-al sites of MOFs and acid surfaces of S-ZrO2 can immobilize anions by strong Lewis acid-base interaction, which enhances the effect of im-mobilization anions, achieving a high Li-ion transference number (t+) of 0.72, and acquiring a high ionic conductivity of 1.05×10–4 S·cm–1 at 60°C. The symmetrical Li/Li cells with the anion-immobilized SCEs may steadily operate for over 600 h at 0.05 mA·cm–2 without the short-circuit occurring. Besides, the solid composite Li/LiFePO4 (LFP) cell with the anion-immobilized SCEs shows a superior discharge specific ca-pacity of 158 mAh·g–1 at 0.2 C. The results illustrate that the anion-immobilized SCEs are one of the most promising choices to optimize the performances of ASSLMBs.  相似文献   

16.
采用高温热解方法成功地合成了高容量硅/碳复合负极材料.通过X射线衍射分析、热重分析、扫描电子显微镜观察、透射电子显微镜观察、恒电流充放电测试、循环伏安法等手段研究了复合材料的性能.结果表明:硅/碳复合材料由Si、C以及少量SiO2组成;硅/碳复合材料中碳的质量分数约在39%左右;经电化学性能测试,在电流0.2 mA下,该硅/碳复合材料首次充电容量768 mAh·g-1,首次库仑效率75.6%,70次循环后可逆比容量仍为529 mAh·g-1,平均容量衰减率为0.44%.这些性能改善归因于硅/碳复合材料中碳的引进,硅表面存在的碳涂层提供了一个快速锂运输通道,降低了电池的阻抗并且充放电过程中稳定了电极的组成.  相似文献   

17.
文章采用固相法合成了电化学性能优异的碳包覆的锂离子电池负极材料Li3.9Mn0.1Ti5O12/C,并对材料进行了XRD、激光粒度分析、循环伏安测试及恒电流充放电测试。结果表明:Mn的掺杂未改变材料的晶体结构,由于Mn4+对Li4Ti5O12的晶胞内部的掺杂和C对其晶胞外部的包覆,使复合材料的电导率,大电流循环稳定性和可逆比容量都明显提高。在1C充放电循环时,Li3.9Mn0.1Ti5O12/C首次放电容量为162.4mAh/g,50次循环后,稳定在159.6mAh/g,容量保持率为98.3%;在2C充放电循环时,首次放电容量达到了153.5mAh/g,展示了优良的电化学特性。  相似文献   

18.
以多壁纳米碳管和Si(OC2H5)4为原料,采用液相法合成包覆了SiO2的多壁碳纳米管(MWCNTs@SiO2),通过调节Si(OC2H5)4的加入量,制备出不同载硅量的前驱体MWCNTs@SiO2,并以此种前驱物合成硅酸铁锂Li2FeSiO4/C材料.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电对Li2FeSiO4/C材料进行了表征及电化学性能测试,实验结果表明载硅量为35.72%的MWCNTs@SiO2前驱体合成的Li2FeSiO4/C材料颗粒大小一致,在0.1C电流密度下循环50圈后获得180 mAh·g-1的稳定放电比容量,具有优良的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号