首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The method of producing ferronickel at low temperature(1250–1400℃) has been applied since the 1950s at Nippon Yakin Kogyo,Oheyama Works, Japan.Limestone was used as an additive to adjust the slag composition for lowering the slag melting point.The ferronickel product was recovered by means of a magnetic separator from semi-molten slag and metal after water quenching.To increase the efficiency of magnetic separation, a large particle size of ferronickel is desired.Therefore, in this study, the influences of CaO, CaF_2, and H_3BO_3 additives on the evolution of ferronickel particle at ≤1250℃ were investigated.The experiments were conducted at 900–1250℃ with the addition of CaO,CaF_2, and H_3BO_3.The reduction processes were carried out in a horizontal tube furnace for 2 h under argon atmosphere.At 1250℃, with the CaO addition of 10 wt% of the ore weight, ferronickel particles with size of 20 μm were obtained.The ferronickel particle size increased to 165μm by adding 10 wt% CaO and 10 wt% CaF_2.The addition of boric acid further increased the ferronickel particle size to 376 μm, as shown by the experiments with the addition of 10 wt% CaO, 10 wt% CaF_2, and 10 wt% H_3BO_3.  相似文献   

2.
To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.  相似文献   

3.
An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The[FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.  相似文献   

4.
Six compositions with different ratio of β-Sialon/Al2O3 were synthesized from Al2O3, Si3N4 and SiO2 by sintering with 3%Y2O3(mass fraction) as addition under the cover with powders of SiC+C and at nitrogen atmosphere. Theeffects of atmosphere, sintering temperature and composition on the sintering behavior were studied. The results showedthat the composites reached the best sintering behavior with the highest density about 92% at 1 650℃ under the weakreduction atmosphere. Finally the relative density of diphasic β-Sialon and β-Sialon/Al2O3 composites were studied andpredicted using ANN (Artificial Neural Networks) method and the results were experimental examined by fore randomsamples.  相似文献   

5.
A predominance area diagram for the Zr-Si-C-O system at 1773 K was plotted according to correlative thermodynamic data. β-SiC/ZrO2 composites were prepared based on the phase diagram by carbothermal reduction of zircon (ZrSiO4) in argon atmosphere. Zircon and carbon black were mixed according to the C/ZrSiO4 mass ratio of 0.2, and with 0, 1wt% and 2wt% extra addition of La2O3. Phase evolution of the mixture was investigated at 1723-1803 K by X-ray powder diffraction, and the microstructure of the product prepared at 1803 K for 4 h was examined by scanning electronic microscope. The results show that the decomposition of ZrSiO4 and the formation of β-SIC can be promoted by increasing the heating temperature and adding La2O3. The β-SiC/ZrO2 composites can be prepared at 1803 K for 4 h in a mixture of zircon, carbon black and La2O3, and the contents of β-SIC and m-ZrO2 in the product sample with 2wt% La2O3 reach the highest values of 10.8wt% and 89.2wt%, respectively. The crystal size of the products is about 200 nm.  相似文献   

6.
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B=(%CaO)/(%SiO2)=1, where B is the basicity. We observed that controlling the slag composition at approximately B=1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.  相似文献   

7.
Calcification roasting–acid leaching of high-chromium vanadium slag (HCVS) was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium. The effects of the purity of CaO, molar ratio between CaO and V2O5 (n(CaO)/n(V2O5)), roasting temperature, holding time, and the heating rate used in the oxidation–calcification processes were investigated. The roasting process and mechanism were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetry–differential scanning calorimetry (TG–DSC). The results show that most of vanadium reacted with CaO to generate calcium vanadates and transferred into the leaching liquid, whereas almost all of the chromium remained in the leaching residue in the form of (Fe0.6Cr0.4)2O3. Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with CaO. Moreover, CaO was more likely to combine with vanadium, as further confirmed by thermodynamic analysis. When the HCVS with CaO added in an n(CaO)/n(V2O5) ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10℃/min from room temperature to 950℃ and maintained at this temperature for 60 min, the leaching ratios of vanadium and chromium reached 91.14% and 0.49%, respectively; thus, efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium. Furthermore, the oxidation and calcification reactions of the spinel phases occurred at 592 and 630℃ for n(CaO)/n(V2O5) ratios of 0.5 and 5, respectively.  相似文献   

8.
The sticking phenomenon between molten slag and refractory is one of the crucial problems when preparing ferronickel from laterite ore using rotary hearth furnace or rotary kiln processes. This study aims to ameliorate sticking problems by using silicon dioxide (SiO2) to adjust the melting degree of the briquette during reduction roasting. Thermodynamic analysis indicates that the melting temperature of the slag gradually increases with an increase in the SiO2 proportion (SiO2/(SiO2 + Al2O3 + MgO) mass ratio). Experimental validations also prove that the briquette retains its original shape when the SiO2 proportion is greater than 75wt%, and sticking problems are avoided during reduction. A ferronickel product with 8.33wt% Ni and 84.71wt% Fe was prepared via reductive roasting at 1500℃ for 90 min with a SiO2 proportion of 75wt% and a C/O molar ratio of 1.0 followed by dry magnetic separation; the corresponding recoveries of Ni and Fe reached 75.70% and 77.97%, respectively. The microstructure and phase transformation of reduced briquette reveals that the aggregation and growth of ferronickel particles were not significantly affected after adding SiO2 to the reduction process.  相似文献   

9.
The addition of silica to steelmaking slags to decrease the binary basicity can promote phosphate enrichment in quenched slag samples. In this study, we experimentally investigated phosphate enrichment behavior in CaO–SiO2–FeO–Fe2O3–P2O5 slags with a P2O5 content of 5.00% and the binary basicity B ranging from 1.0 to 2.0, where the (%FetO)/(%CaO) mass percentage ratio was maintained at 0.955. The experimental results are explained by the defined enrichment degree RC2S-C3P of solid solution 2CaO·SiO2–3CaO·P2O5 (C2S–C3P), where RC2S-C3P is a component of the developed ion and molecule coexistence theory (IMCT)–Ni model for calculating the mass action concentrations Ni of structural units in the slags on the basis of the IMCT. The asymmetrically inverse V-shaped relation between phosphate enrichment and binary basicity B was observed to be correlated in the slags under applied two-stage cooling conditions. The maximum content of P2O5 in the C2S–C3P solid solution reached approximately 30.0% when the binary basicity B was controlled at 1.3.  相似文献   

10.
ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compared with the reactions conducted without the addition of NaCl, those performed with the addition of an appropriate amount of NaCl finished at substantially lower temperatures. However, the addition of too much NaCl suppressed this effect. With the assistance of NaCl, a special morphology of polyhedral ZrB2 particles covered with ZrB2 nanosheets was obtained. Moreover, the experimental results revealed that the special morphology was the result of the combined effects of B2O3 and NaCl. The formation of the special microstructure is explained on the basis of the "dissolution-recrystallization" mechanism.  相似文献   

11.
A study on the melting and viscosity properties of the chromium-containing high-titanium melting slag (CaO–SiO2–MgO–Al2O3–TiO2–Cr2O3) with TiO2 contents ranging from 38.63wt% to 42.63wt% was conducted. The melting properties were investigated with a melting-point apparatus, and viscosity was measured using the rotating cylinder method. The FactSage 7.1 software and X-ray diffraction, in combination with scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS), were used to characterize the phase equilibrium and microstructure of chromium-containing high-titanium melting slags. The results indicated that an increase in the TiO2 content led to a decrease in the viscosity of the chromium-containing high-titanium melting slag. In addition, the softening temperature, hemispheric temperature, and flowing temperature decreased with increasing TiO2 content. The amount of crystallized anosovite and sphene phases gradually increased with increasing TiO2 content, whereas the amount of perovskite phase decreased. SEM observations revealed that the distribution of the anosovite phase was dominantly influenced by TiO2.  相似文献   

12.
The Al-Al2O3-MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M1, M2, and M3, respectively, were prepared at 1700℃ for 5 h under a flowing N2 atmosphere using the reaction sintering method. After sintering, the Al-Al2O3-MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen M1 was composed of MgO and MgAl2O4. Compared with specimen M1, specimens M2 and M3 possessed MgAlON, and its production increased with increasing aluminum addition. Under an N2 atmosphere, MgO, Al2O3, and Al in the matrix of specimens M2 and M3 reacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al-Al2O3-MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an N2 atmosphere, the partial pressure of oxygen is quite low; thus, when the Al-Al2O3-MgO composites were soaked at 580℃ for an extended period, aluminum metal was transformed into AlN. With increasing temperature, Al2O3 diffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with Al2O3 to form MgAl2O4. When the temperature was greater than (1640 ±10)℃, AlN diffused into Al2O3 and formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and MgAl2O4 at high temperatures because of their similar spinel structures.  相似文献   

13.
The properties of MnO–Al2O3–SiO2-based plasticized inclusion are likely to change during soaking  process due to its low melting point. In this study, the evolution of the MnO–Al2O3–SiO2-based inclusion of 18wt%Cr?8wt%Ni stainless steel under isothermal soaking process at 1250°C for different times was investigated by laboratory-scale experiments and thermodynamic analysis. The results showed that the inclusion population density increased at the first stage and then decreased while their average size first decreased and then increased. In addition, almost no Cr2O3-concentrated regions existed within the inclusion before soaking, but more and more Cr2O3 precipitates were formed during soaking. Furthermore, the plasticity of the inclusion deteriorated due to a decrease in the amount of liquid phase and an increase in the high-melting-point-phase MnO–Cr2O3 spinel after the soaking process. In-situ observations by high-temperature confocal laser scanning microscopy (CLSM) confirmed that liquid phases were produced in the inclusions and the inclusions grew rather quickly during the soaking process. Both the experimental results and thermodynamic analysis conclude that there are three routes for inclusion evolution during the soaking process. In particular, Ostwald ripening plays an important role in the inclusion evolution, i.e., MnO–Al2O3–SiO2-based inclusions grow by absorbing the newly precipitated smaller-size MnO–Cr2O3 inclusions.  相似文献   

14.
Ti3SiC2-reinforced Ag-matrix composites are expected to serve as electrical contacts. In this study, the wettability of Ag on a Ti3SiC2 substrate was measured by the sessile drop method. The Ag–Ti3SiC2 composites were prepared from Ag and Ti3SiC2 powder mixtures by pressureless sintering. The effects of compacting pressure (100–800 MPa), sintering temperature (850–950℃), and soaking time (0.5–2 h) on the microstructure and properties of the Ag–Ti3SiC2 composites were investigated. The experimental results indicated that Ti3SiC2 particulates were uniformly distributed in the Ag matrix, without reactions at the interfaces between the two phases. The prepared Ag–10wt%Ti3SiC2 had a relative density of 95% and an electrical resistivity of 2.76×10-3 mΩ·cm when compacted at 800 MPa and sintered at 950℃ for 1 h. The incorporation of Ti3SiC2 into Ag was found to improve its hardness without substantially compromising its electrical conductivity; this behavior was attributed to the combination of ceramic and metallic properties of the Ti3SiC2 reinforcement, suggesting its potential application in electrical contacts.  相似文献   

15.
The aim of the present study was to fabricate Fe–TiC–Al2O3 composites on the surface of medium carbon steel. For this purpose, TiO2–3C and 3TiO2–4Al–3C–xFe (0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate. The mixtures and substrate were then melted using a gas tungsten arc cladding process. The results show that the martensite forms in the layer produced by the TiO2–3C mixture. However, ferrite–Fe3C–TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2–4Al–3C mixture. The addition of Fe to the TiO2–4Al–3C reactants with the content from 0 to 20wt% increases the volume fraction of particles, and a composite containing approximately 9vol% TiC and Al2O3 particles forms. This composite substantially improves the substrate hardness. The mechanism by which Fe particles enhance the TiC + Al2O3 volume fraction in the composite is determined.  相似文献   

16.
The 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) powder had three particle size distributions, while the fine one was lower than 100 nm. The 3Y-TZP compact was prepared by dry-pressing under pressures ranged from 10 to 30 MPa and then presintered at 1250°C for 2 h. The matrix dry-pressed under the pressure of 20 MPa had a porosity of 16.7% and could be easily processed by computer aided design and computer aided manufacturing (CAD/CAM), and which had been infiltrated by the La2O3–Al2O3–SiO2 glass at 1200°C for 4 h. The flexural strength and fracture toughness of the composite were 710.7 MPa and 6.51 MPa m1/2, respectively. The low shrinkage (0.3%) of the composite can satisfy the net-shape fabrication standard. XRD results illustrated that zirconia in the La2O3–Al2O3–SiO2 glass-infiltrated 3Y-TZP all-ceramic composite was mainly in the tetragonal phase. SEM and EDS results indicated that the pores of the matrix were almost filled by the La2O3–Al2O3 –SiO2 glass  相似文献   

17.
Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650℃ was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ=0.576 mg·m-3·min-1 and K=0.048 m3.  相似文献   

18.
The effect of diboron trioxide (B2O3) on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, mercury injection porosimetry, X-ray diffraction, metallographic microscopy, and scanning electron microscopy-energy-dispersive X-ray spectroscopy. The results showed that the crushing strength increased greatly with increasing B2O3 content and that the increase in crushing strength was strongly correlated with a decrease in porosity, the formation of liquid phases, and the growth and recrystallization consolidation of hematite crystalline grains. The smelting properties were measured under simulated blast furnace conditions; the results showed that the smelting properties within a certain B2O3 content range were improved and optimized except in the softening stage. The valuable element B was easily transformed to the slag, and this phenomenon became increasingly evident with increasing B2O3 content. The formation of Ti(C,N) was mostly avoided, and the slag and melted iron were separated well during smelting with the addition of B2O3. The size increase of the melted iron was consistent with the gradual optimization of the dripping characteristics with increasing B2O3 content.  相似文献   

19.
The carbothermic reduction of vanadium titanomagnetite concentrate(VTC)with the assistance of Na2CO3was conducted in an argon atmosphere between 1073 and 1473 K.X-ray diffraction and scanning electron microscopy were used to investigate the phase transformations during the reaction.By investigating the reaction between VTC and Na2CO3,it was concluded that molten Na2CO3broke the structure of titanomagnetite by combining with the acidic oxides(Fe2O3,TiO2,Al2O3,and SiO2)to form a Na-rich melt and release FeO and MgO.Therefore,Na2CO3accelerated the reduction rate.In addition,adding Na2CO3also benefited the agglomeration of iron particles and the slag–metal separation by decreasing the viscosity of the slag.Thus,Na2CO3assisted carbothermic reduction is a promising method for treating VTC at low temperatures.  相似文献   

20.
As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO–SiO2slags,this work investigated the activity coefficient of NiO in SiO2-saturated Mn O–Si O2slag and Al2O3-saturated Mn O–SiO2–Al2O3slag at 1623 K with controlled oxygen partial pressure levels of 10-7,10-6,and 10-5Pa.Results showed that the solubility of nickel oxide in the slags increased with increasing oxygen partial pressure.The nickel in the Mn O–Si O2slag and Mn O–Si O2–Al2O3slag existed as Ni O under experimental conditions.The addition of Al2O3in the Mn O–Si O2slag decreased the dissolution of nickel in the slag and increased the activity coefficient of Ni O.Furthermore,the activity coefficient of Ni O(γN_(i O)),which is solid Ni O,in the Si O2saturated Mn O–Si O2slag and Al2O3saturated Mn O–Si O2–Al2O3slag at 1623 K can be respectively calculated asγN_(i O)=8.58w(Ni O)+3.18 andγN_(i O)=11.06w(Ni O)+4.07,respectively,where w(Ni O)is the Ni O mass fraction in the slag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号