首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 859 毫秒
1.
四唑衍生物结构及性质的理论研究   总被引:1,自引:0,他引:1  
在B3LYP/aug-cc-pvDZ水平上研究了7种取代基(-H,-CN,-N3,-OH,-NH2,-CH3和-NO2)取代四唑化合物碳上的氢原子生成的衍生物的几何结构、电子结构和含能性质.采用NBO方法计算了原子电荷,分析了分子内的相互作用.采用原子化方案计算了这7种衍生物的生成热,结果显示,与取代基相连的碳原子的电荷变化与取代基的电负性,相邻氮原子的电荷与取代基常数之间均存在很好的线性相关性.-N3和-CN取代的衍生物的生成热较大,成为含能材料的潜力较大.  相似文献   

2.
根据邻、对位定位基一般为供电子基因使苯环活化,间位定位基是吸电子基因使苯环钝化的原则,提出由取代基的电荷分数确定取代基类型的方法.  相似文献   

3.
—取代联苯发生亲电取代反应时,当取代基为产生-I-C效应的吸电基或供电基在联苯环上4-位或2-位时,第二个取代基主要进入,未有取代基的苯环的邻位和对位,以对位为主.若取代基为产生-I>+C效应的吸电基或供电基在联苯环上3-位时,第二个取代基主要进入有取代基的苯环的邻位和对位,以对位为主.  相似文献   

4.
在有机化学的亲电取代反应定位法则教学中,甲基代表烷基,作为芳烃亲电取代反应定位效应的典型例子,但甲基不同于乙基等烷基,具有不同的定位能力,烷基是如何影响芳环的结构从而影响取代基定位,教材和教学中描述较简单,不便于学生领会和比较。该文就此问题进行探讨,结果表明,烷基苯RAr(R—Me、Et)的R在空间的位置影响烷基苯的能量和原子电荷密度,从而影响烷苯的亲电取代反应。(1)烷苯的R—Ar键旋转形成不同构象,其中的最大与最小体系能量值之差△E,△E(Me)〈△E(Et),{△E(Me)=0.0000084a.u,△E(Et)=0.0068029a.u},甲苯比乙苯的R—Ar单键更容易自由旋转。在EtAr,C8-C7-C1平面与苯环垂直时,体系能量[E(90)=-308.661166a.u.]最低,为较稳定的优势构象。(2)甲基和乙基均向苯环供电子,虽甲(乙)苯环的碳原子所带电荷之和都不及苯,但甲苯比乙苯的环碳上电子密度大,∑Q(Me,30)=-1.02794〈∑Q(Et,90)=-1.010487。(3)甲(乙)苯化合物中,均为邻、对位碳原子电子密度大于苯环碳{甲基:邻位qc2(30)=qc6(30)=-0.212118,对位-0.20724~-0.20728;乙基:邻位qc2(90)=qc6(90)=-0.209509,对位q(90)(-0.20695)},间位碳原子的电子密度小于苯环碳[甲基间位-0.19153~-0.19228;乙基间位q(90)=-0.192171],甲、乙苯的邻、对位有利于亲电取代反应,且甲基大于乙基的定位能力。(4)亲电试剂Me^+与苯环反应形成邻、对位的碳正离子中间体比闯位碳正离子中间体稳定,有利于生成邻、对位取代产物,因此,甲、乙基均为邻、对位定位基。  相似文献   

5.
采用MNDO法计算了苯酚和它的一些衍生物的最稳定的几何构型(用能量梯度法优化得到)的电荷分布,探讨了羟基、甲酰基等取代基对电荷分布的影响.计算结果表明,在这类化合物中绝对值最大的负的净电荷总是出现在羟基的邻位,适当配置羟基、甲酰基等取代基的位置可使苯环上的某些点(如羟基的邻位)上的净电荷变得更负.1个基团是“拉电子基团”或是“推电子基团”不能准确说明取代基对电荷分布的影响,必须从取代基在分子体系中的诱导、共轭效应等方面进行具体分析,并藉助量子化学计算,才能获得准确的定量结果.  相似文献   

6.
关于苯环上取代基的定位效应及其对反应速度的影响,国内外各教材都有详细解释[1-6],但对初学者来说,共振论似乎难以理解;对诱导效应和共轭效应来说,供电子基能增加苯环的电行密度,吸电子基能降低苯环的电荷密度,觉得解释还不够明确。根据经典理论,价电子是严格遵循以自族方向相反成对地在自己的轨道上运转。分子内电荷密度的改变,应该不违背这一原则。为了便于学生理解,笔者根据在教学中的体会,谈点看法。1邻对位定位基按照这类取代基的结构特点,可分为以下五种类型:1.1含未共用电子对又带部分负电荷的基团属这一类型的基团…  相似文献   

7.
乙烯基在苯乙烯亲电取代反应中的定位效应   总被引:1,自引:0,他引:1  
本文从理论上研究了苯乙烯的电子结构,结果表明,苯乙烯的乙烯基在空间的位置影响苯乙烯的原子电荷分布和能量,从而影响苯乙烯的亲电取代反应。苯乙烯的C—Ph键旋转,形成不同构象之间的最大与最小体系能量值之差ΔE仅0.00525188a.u(3.2956kcal.mol^-1)。当C8-C7-C1与苯环成40度时,体系能量E(40)=-307.448920182a.u最低,为稳定的优势构象。苯乙烯中乙烯基表现为吸电基,它的作用使邻、对位碳原子的负电荷比苯环碳原子多,邻、对位亲电取代反应中间体最稳定,反应的途径最有利,乙烯基主要表现为邻、对位定位基。  相似文献   

8.
采用密度泛函理论(DFT)的B3LYP方法,在6-311G**基组水平上计算多氯代苯胺脱氯加氢反应中苯环上各C原子电荷分布和亲电取代σ配位化合物能量的变化,研究多氯代苯胺脱氯加氢合成3,5-二氯苯胺反应的定位效应.结果表明:多氯代苯胺邻、对位C原子电荷数和σ配位化合物能量明显小于间位C原子的电荷数和σ配位化合物能量,邻、对位会优先发生脱氯取代反应,即理论上朝着生成3,5-二氯苯胺的方向进行.  相似文献   

9.
一取代联苯发生亲电取代反应时,当取代基为产生-I-C效应的吸电基或供电基在联苯环上4-位或2-位时,第二个取代基主要进入,未有取代基的苯环的邻位和对位,以对位为主。若取代基为产生-I〉+C效应的吸电基或供电基在联苯环上3-位时,第二个取代基主要进入有取代基的苯环的邻位和对位,以对位为主。  相似文献   

10.
从理论上研究了苯甲醚的电子结构,结果表明,苯甲醚的甲氧基在空间的位置影响苯甲醚的原子电荷分布和能量,从而影响苯甲醚的亲电取代反应。苯甲醚的O—Ph键旋转,形成不同构象之间的最大与最小体系能量值之差ΔE仅ΔE=0.006 31 a.u。当C1-O8—C7与苯环垂直时,体系能量[E(90)=E(270)=-344.429 48 a.u]最低,为稳定的优势构象。苯甲醚中甲氧基虽然表现为吸电基,但它的作用使邻、对位碳原子的负电荷比苯环碳原子多,成为亲电取代反应中心,在邻、对位碳原子上较容易被亲电试剂进攻,甲氧基为邻、对位定位基。亲电试剂Me+与苯甲醚反应形成的各种碳正离子中间体的稳定性差异不大,电子效应是影响亲电取代反应的重要因素。  相似文献   

11.
本文分别用Si_(16)H_(21)模拟Si(113),Si_(35)H_(30)模拟Si(112)高密勒指数表面,用Si_(37)H_(39)模拟Si(111)及Si_(19)H_(18)模拟Si(100)表面.通过SCF-LCAC-CNDO理论计算,研究了各种表面上的净电荷分布.发现,各种表面上存在不同程度且不同分布的净电荷,表面原子sp~3轨道中的电荷做了重新分布,净电荷较多地局域在悬键方向上.表面上台阶的存在强烈地影响着表面净电荷转移的性质.此现象在Si(112)面上尤其突出.本文据此解释了不同晶面上附加表面电偶极子及态密度等实验结果.  相似文献   

12.
将电荷转移复合物视为一超分子,运用AM1量子化学方法对7,7,8,8-四基氰对二次甲基苯醌-对位取代苯酚负离子(取代基CH3-,Cl-,NH2-,NO2-)荷移复合物进行了研究.优化结果表明在稳定构型中该系列复合物的电子供体取代苯酚负离子的供电中心氧原子沿一倾角指向受体分子中的受电中心次甲基碳原子;复合物的形成过程具有明显的电荷转移特性,复合物的稳定性及与电荷转移量都按供体取代基NH2-,CH3-,Cl-,NO2-的顺序依次递减.图1,表6,参8.  相似文献   

13.
本文研究N-(对-,间-,邻-羧苯基)-松香马来酰亚胺聚酯的合成方法及其热稳定性能.在催化剂存在下,N-(对-,间-,邻-羧苯基)-松香马来酰亚胺三种异构体与乙二醇进行缩聚反应生成三种松香马来酐聚酰亚胺酯(分别称为PPEI、PMEI、POEI)的产率分别为80%,80%,72%.在反应体系分别添加一定量的H_2SO_2,H_3PO_4,H_3BO_3,ZnO,Sb_2O_3与(CH_3CO_2)Zn(1:1),H_3BO_3与ZnO(1:1)做催化剂时,对缩聚反应均有催化作用,其中以H_3BO_3与ZnO(1:1)的催化效果最好.升高缩聚反应体系的温度则反应产率随之增高.经溶解性能试验、傅里叶红外光谱、核磁共振氢谱测试表明合成的三种聚酰亚胺酯为目标产物.热重分析(TGA)表明这三种聚酞亚胺酯的ONSET温度均超过470℃,显示出高的热稳定性能.  相似文献   

14.
采用DFT-B3LYP/6-31G(d,p)水平的几何全优化方法,对环己烷a、e键取代以及不同取代基(甲基、苯基)的一元取代衍生物进行了计算,从总能量、前线轨道能量、键能、分子的空间位阻和电子效应等微观角度对衍生物的稳定性进行了比较。结果表明:对同一取代基在不同位上,e键位取代比a键位更稳定;对同一位上的不同取代基,大基团比小基团更稳定。  相似文献   

15.
糠醇树脂在高温炭化过程中的结构演变,对其在高温下的结构/性能稳定性具有极为重要的影响。本文基于密度泛函理论方法,利用Gaussian09程序包,过QST2(Quadratic Synchronous Transit)和IRC(Intrinsic Reaction Coordinate)等方法,研究了糠醇树脂在单呋喃环,双呋喃环,以及三呋喃环等不同层次结构单元的开环裂解反应路径。此外,在B3LYP/6-31G**水平下对开环过程中的各种结构进行优化,并在MP2/6-31G**水平下计算各结构的单点能,进而比较了各种反应路径的活化能。结果表明:位于呋喃环间的亚(次)甲基桥上的氢原子较为活泼,易形成氢自由基。伴随着氢自由基向呋喃环上的碳原子的迁移,呋喃环开环。而氢自由基的迁移主要表现出两种方式:(1) 如产生的氢自由基与呋喃环上的氧原子较近,则先与氧原子相结合形成羟基,并导致呋喃环的开环;然后再从氧原子上迁移到碳原子上,从而形成链式的酮结构,此方式要经过两个过渡态和一个中间体才能完成开环。以这种方式开环需要的活化能相对较小。(2) 当氢自由基与呋喃环上的氧原子较远,则直接迁移到碳原子形成C—H键。该过程只经过一个过渡态即完成呋喃环的开环。此外,通过能量比较发现:有水参与的开环反应活化能,要低于无水参与的开环反应活化能;而随着呋喃环的增多,开环反应的活化能逐渐增大。  相似文献   

16.
在标题配位聚合物[Cu(C5H5N)2Cl2]n中,每个铜离子与4个氯离子和2个吡啶氮原子配位,形成[4 2]拉长的八面体几何构型.其中2个铜离子通过μ-Cl-桥连中心对称的二聚体,同时二聚体再通过μ-Cl-桥连,得到1-D链沿着a-铀方向延伸,这种无限1-D链进一步通过氢键C-H…Cl相连,在(001)平面内得到2-D网状的超分子.  相似文献   

17.
烷基的电子效应尽管因其所连环境的不同而有异,但是认为烷基此一时是给电子的诱导效应,彼一时又是吸电子的诱导效应,以及认为烷基的超共轭效应仅存于溶液体系中是站不住脚的。本文作者认为,烷基在不带电荷的中性有机结构中,通过诱导效应总是吸电子的,但当它与不饱和结构,包括带正电荷的原子或原子团相连时,还通过Baker—Nathan超共轭效应,乃至空间超共轭效应起供电作用。只是这种供电作用,在溶液中,由于溶剂化作用,其相对强弱遵循Baker—Nathan顺序;而在气相或溶剂化作用很小的溶液中则遵循反Baker—Nathan顺序.  相似文献   

18.
通过基于密度泛函理论(DFT)+U的第一性原理方法研究了单原子Co在TiO2(101)面的掺杂位置和方式、几何结构和整体能量以及掺杂后产物的制氢反应机制,得到了稳定且易出现的单原子修饰结构,即单原子Co吸附在4个O组成的表面空隙的中心位,记为Co/TiO2(101)。进一步对Co/TiO2(101)的析氢反应过程和性能进行研究,确定了当且仅当TiO2(101)面完成表面羟基化反应后,H原子全覆盖的TiO2(101)表面才能进行后续的析氢反应;此时单原子Co是唯一的反应位点,整体的制氢反应自由能ΔGH*比Co(111)面更加趋近于0,显示出其具有远优于金属Co的催化性能。此外,Co和TiO2间的电荷转移和相互作用使TiO2带隙出现新的掺杂能级,可带来作为光催化基材的TiO2光吸收性能的改善。  相似文献   

19.
利用基于密度泛函理论的第一性原理方法,研究了锂修饰的类石墨烯碳氮纳米结构的储氢性能.结果表明该体系是一种理想的储氢材料,锂原子通过向衬底转移电荷而带正电,通过静电场的极化作用,每个锂原子可以吸附3个氢分子,其储氢的质量比可达11.5 wt%.氢分子的平均吸附能比较理想,可以实现在室温下可逆的储氢和放氢.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号