首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
烧结温度对细晶粒Ti(C,N)基陶瓷组织和性能的影响   总被引:4,自引:1,他引:4  
采用真空烧结工艺制备超微、纳米复合Ti(C,N)基金属陶瓷.研究了烧结温度对超微、纳米复合Ti(C,N)基金属陶瓷的显微组织、性能的影响,并用SEM观察试样的断口形貌.结果表明,随着烧结温度的升高,陶瓷材料的显微组织逐渐变得均匀致密,晶粒长大不明显,环形相逐渐变得完整;当烧结温度超过1450℃,晶粒会明显长大,环形相变厚、变脆,导致材料的性能下降.进一步分析表明,超微和纳米复合Ti(C,N)基金属陶瓷的最佳烧结温度分别为1410℃、1450℃.  相似文献   

2.
为了对比纳米HA与大颗粒或大晶粒HA作为骨填充材料在动物体内的实验效果,通过改变烧结工艺来获得大颗粒或大晶粒HA.扫描电镜检测结果表明,烧结温度对粒子尺寸的影响最为敏感:低于800℃烧结时,粒子长大缓慢甚至没有长大现象;超过900℃后,粒子迅速长大;1200℃烧结时,随烧结时间延长,晶粒呈现不规则长大,并出现二次再结晶现象。  相似文献   

3.
氧化钛纳米陶瓷的制备及其结构与力学性能   总被引:1,自引:0,他引:1  
为探讨在无压烧结过程中TiO2纳米陶瓷的致密化与晶粒长大的关系以及纳米陶瓷的结构对其力学性能的影响,采用溶胶一凝胶技术制备的不同颗粒粒径的TiO2纳米粉体经冷压成型后无压烧结TiO2纳米陶瓷.研究结果表明:利用相变辅助无压烧结方法在800℃烧结获得了晶粒粒径小于60 nm、相对密度超过95%的TiO2纳米块体陶瓷:当800℃以下烧结时,TiO2纳米陶瓷的相对密度随烧结温度的升高而快速增大,而TiO2纳米陶瓷的平均晶粒粒径随烧结温度升高则缓慢长大;当大于800℃的温度烧结时,TiO2纳米陶瓷的致密化加快,但陶瓷的晶粒粒径则快速长大.TiO2纳米陶瓷的显微硬度主要取决于TiO2纳米陶瓷的相对密度和平均晶粒粒径,即纳米氧化钛陶瓷的相对密度越大,晶粒粒径越小,则显微硬度越大.  相似文献   

4.
一种新型晶粒长大抑制剂对YG10硬质合金烧结行为的影响   总被引:2,自引:0,他引:2  
研究了一种新型晶粒长大抑制剂对机械合金化制备的纳米晶WC-10Co复合粉末真空烧结行为的影响,探讨了其影响机理.研究结果表明:新型晶粒长大抑制剂有利于烧结致密化;在传统的过渡族元素碳化物基础上添加新型晶粒长大抑制剂,能明显提高复合抑制剂抑制晶粒长大效果,使WC晶粒在烧结过程中明显发生定向生长,抑制盘状WC晶粒的形成;含0.1%新型晶粒长大抑制剂的WC-10Co-0.8VC/Cr3C2纳米晶复合粉末压坯在1375℃烧结30 min后密度为14.48 g/cm3,WC晶粒尺寸为160 nm,显微硬度为2.150 GPa.  相似文献   

5.
金属陶瓷中颗粒的溶解──析出生长机制动力学   总被引:3,自引:0,他引:3  
推导出金属陶瓷中颗粒的溶解-析出生长机制动力学公式.由小颗粒的溶解动力学及大颗粒的生长动力学两个函数式描述金属陶瓷烧结过程中与动力学过程有关的诸因素,包括:元素的扩散系数、颗粒间的浓度梯度、有效扩散面积、颗粒的平均尺寸及颗粒数.动力学公式表明:小颗粒的溶解及大颗粒的长大数率同扩散系数、浓度梯度及有效扩散面积成正比;同颗粒的平均尺寸及颗粒数成反比  相似文献   

6.
Al2O3/WC-10Co/ZrO2/Ni金属陶瓷的微波烧结   总被引:6,自引:1,他引:6  
以纳米WC-10Co复合粉末、YSZ纳米粉末、Al2O3亚微粉末与工业Ni粉为原料,采用微波烧结+热等静压处理制备性能优良的Al2O3/WC-10Co/ZrO2/Ni金属陶瓷,研究微波烧结、微波烧结+热等静压处理对Al2O3/WC-10Co/ZrO2/Ni金属陶瓷的组织结构和力学性能的影响。研究结果表明:WC-10Co(10%,质量分数),YSZ(30%),Al2O3(55%)与Ni(5%)复合粉末高能球磨后,经过微波烧结+热等静压处理,可以得到平均晶粒度小于1.5μm的整体性能较好的亚微Al2O3/WC-10Co/ZrO2/Ni金属陶瓷,其相对密度为98.4%,洛氏硬度为HRA 94.0;微波烧结+热等静压可以有效地消除微波烧结造成Al2O3/WC-10Co/ZrO2/Ni金属陶瓷中的孔隙,提高复合材料的密实度和力学性能,而且金属陶瓷的晶粒基本没有异常长大。  相似文献   

7.
采用沉淀法制备的Y-TZP纳米粉体经冷压成型后烧结成Y-TZP纳米陶瓷.结果表明,Y-TZP纳米陶瓷的密度随着烧结温度的升高和烧结时间的延长而增大,但随成型压力和初始粉体颗粒的增大而减小.而陶瓷平均晶粒尺寸随成型压力的增大和烧结时间延长而长大.烧结过程中大量单斜相ZrO2生成改变了Y-TZP纳米陶瓷的烧结行为和微结构.采用无压烧结获得了相对密度为98%、平均晶粒尺寸为60 nm的Y-TZP纳米陶瓷.Y-TZP纳米陶瓷的显微硬度主要取决于陶瓷的相对密度、相结构和晶粒尺寸,即陶瓷的四方相质量分数越高,相对密度越大,晶粒尺寸越小,则显微硬度越高.  相似文献   

8.
采用分子动力学模拟方法研究了不同尺寸Au纳米颗粒在烧结过程中晶型转变及烧结颈长大机制.研究发现纳米颗粒的烧结颈生长主要分为两个阶段:初始烧结颈的快速形成阶段和烧结颈的稳定长大阶段.不同尺寸纳米颗粒烧结过程中烧结颈长大的主要机制不同:当颗粒尺寸为4 nm时,原子迁移主要受晶界(或位错)滑移、表面扩散和黏性流动控制;当尺寸在6nm左右时,原子迁移主要受晶界扩散、表面扩散和黏性流动控制;当颗粒尺寸为9 nm时,原子迁移主要受晶界扩散和表面扩散控制.烧结过程中Au颗粒的fcc结构会向无定形结构转变.此外,小尺寸的纳米颗粒在烧结过程中由于位错或晶界滑移、原子的黏性流动等因素会形成hcp结构.  相似文献   

9.
以WC-10Co纳米复合粉末、YSZ纳米粉末与Al2O3亚微粉末为原料,采用热压烧结制备了性能优良的Al2O3/WC-10Co/ZrO2金属陶瓷.分别在1380,1450和1500℃烧结温度下制备Al2O3/WC-10Co/ZrO2金属陶瓷,通过考察烧结体的断裂韧性、洛氏硬度、密度、磁滞回线和断口形貌,研究了烧结温度对WC-10Co纳米复合粉末、YSZ纳米陶瓷粉末与Al2O3亚微粉末的复合粉末烧结性能的影响.确定合理的Al2O3/WC-10Co/ZrO2金属陶瓷烧结温度为1450℃.结果表明,质量分数为50%的WC-10Co纳米复合粉末、10%的YSZ纳米陶瓷粉末与和40%的亚微Al2O3粉末的复合粉末经过48h的高能球磨后,再经过1450℃热压烧结,可以得到晶粒尺寸小于1μm的整体性能较好的亚微Al2O3/WC-10Co/ZrO2金属陶瓷,其相对密度为97.5%,断裂韧性为7.4468MPa·m1/2,硬度为HRA 94.0.  相似文献   

10.
超细晶粒WC—Co硬质合金的收缩与晶粒长大   总被引:5,自引:0,他引:5  
采用复合烧结工艺(真空烧结+热等静压烧结)制备超细晶粒WC-Co硬质合金,研究了烧结过程中的超细合金的收缩及晶粒长大行为。结果表明,在常规的固相烧结阶段,局部微区内的液相烧结使超细晶粒WC-Co硬质合金的收缩及晶粒长大行为不同于普通晶粒硬质合金。在此阶段,WC晶粒出现较严重的早期晶粒长大现象,导致合金的收缩占总体收缩量的90%以上。  相似文献   

11.
The growth rates of bainite plates in an Fe-C-Mn-Si superbainitie steel were investigated by in situ observation. The lengthening rates of ferrite bainite during both cooling and isothermal holding processes were observed and the growth rates of bainite plates nucleating at grain boundaries, within grains and on preformed bainite were measured. It is indicated that the lengthening rates of bainite plates during the cooling and isothermal processes were different, and that the growth rates of bainite plates nucleating at different types of sites also demon- strated diversity. The bainite plates initiating at [vain boundaries during cooling grew the fastest, while the plates nucleating on preformed bainite did the slowest. However, the growth rate of the bainite plates nucleating at grain boundaries during isothermal transformation de- creased the most, whereas the bainite plates initiating within grains grew the fastest. In addition, the growth rate of ferrite bainite in the study supported the diffusion transformation mechanism of bainite from the viewooint of ~rowth rate.  相似文献   

12.
通过对ZnO陶瓷中晶粒的生长发育过程的详细研究,结果发现烧成初期,在较大粉粒与较小粉粒间表面能差的作用下,首先形成许多原始ZnO粉粒降集体,粉粒的聚集中心是其附近较大的ZnO粉粒,粉粒聚集体是ZnO晶粒的雏形,其中存在许多不规则的微界面,相邻聚集体之界面则是原始的晶界,随烧结温度升高,晶粒不断长大,晶粒中的微界面趋于消失。文中提出了新的ZnO晶体生长模型,即晶粒的生长发育经历了2个阶段;1是粉聚集  相似文献   

13.
镍包覆铜复合粉末烧结体界面扩散行为研究   总被引:1,自引:1,他引:0  
利用固相烧结法将镍包铜粉成功地制成了块状烧结体,通过SEM、XRD和EDS研究了烧结过程中镍包铜粉中界面的迁移情况.结果表明,随烧结温度升高,颗粒内原子扩散系数越大,烧结体界面迁移越容易,形成较大的晶粒,同时界面组织也比较均匀.在扩散过程中,由于镍的扩散系数比铜大,镍层扩散进入铜形成了铜镍固溶体,界面呈现单向迁移.  相似文献   

14.
以Isobam600AF为分散剂,Isobam104为胶黏剂,采用注凝成型工艺和真空无压烧结技术,通过改进两步烧结法制备了透明氧化铝陶瓷,探究了不同烧结温度和保温时间对氧化铝陶瓷晶粒尺寸、致密度、光学性能和力学性能的影响.结果表明:该烧结工艺可有效控制晶粒尺寸长大和提高相对密度,进而提高其光学性能和力学性能.在烧结过程中,当温度升高到一定范围时,致密化过程开始,且致密化速率随着温度的升高和保温时间的延长先增加后降低,在两步烧结1 400 ℃保温3 h时致密化速率达到最快.因此,坯体的致密化过程是非线性的,且具有一个最高致密化速率温度和保温时间点.  相似文献   

15.
通过热模拟实验研究了含钒0.19%的0.2C-0.5Si-0.08P-Mn TRIP钢连续冷却过程中的相变行为.实验结果表明:奥氏体未再结晶区进行50%的大变形,使随后连续冷却过程中的铁素体开始相变温度Ar3提高42~58℃;相同冷却速度下,尤其是当冷速小于20℃/s时,变形促进铁素体的形成,而使贝氏体形核率降低;钒的氮化物和碳化物在铁素体晶粒和晶界处弥散析出,无论变形或未变形条件下,冷速0.5℃/s时,析出粒子尺寸在2~5nm范围内,只有极少量尺寸约为~20nm的较大析出粒子.  相似文献   

16.
粉末高温合金FGH97疲劳裂纹扩展行为   总被引:1,自引:0,他引:1  
测定不同晶粒尺寸、γ'相以及不同Hf含量的粉末高温合金FGH97在650℃高温条件下的疲劳裂纹扩展速率,并将其与FGH95和FGH96两代粉末合金的疲劳裂纹扩展速率进行对比. 用定量分析的方法对FGH97合金在疲劳断裂各个阶段的行为特征进行分析. 较大晶粒尺寸的FGH97合金具有较低的裂纹扩展速率,合理的二次和三次γ'相匹配析出,可以获得较高的疲劳寿命;Hf元素的添加使合金的整体疲劳寿命增大;FGH97合金与FGH95和FGH96相比,具有较高的疲劳裂纹萌生抗力,更低的高温疲劳裂纹扩展速率.  相似文献   

17.
In this study, effects of initial orientation on microstructure evolution and mechanical properties of AZ31 Mg alloy sheets via accumulated extrusion bonding(AEB) was systematically studied. The samples with RD and TD parallel to extrusion direction(ED) were labeled as RED and TED, respectively. RD and TD pieces alternately stacked was named as RTED. The results revealed that under three-dimensional compressive stress, {10-12} tensile twinning dominated the first stage deformation in container. ...  相似文献   

18.
The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then grew in different directions through movement of grain boundaries into the ferrite phase. Subsequently, the adjacent austenite grains impinged against each other during the α→γ transformation. After the α→γ transformation, austenite grains coarsened via the coalescence of small grains and via boundary migration between grains. The growth process of austenite grains was a continuous process during heating, isothermal holding, and cooling in simulated thermal cycling. Abundant finely dispersed nanoscale TiN particles in a steel specimen containing 0.012wt% Ti effectively retarded the grain boundary migration, which resulted in refined austenite grains. When the Ti concentration in the steel was increased, the number of TiN particles decreased and their size coarsened. The big particles were not effective in pinning the austenite grain boundary movement and resulted in coarse austenite grains.  相似文献   

19.
In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at 850, 1000, and 1100℃ for 30 min. A grain growth model was proposed based on experimental results. It is indicated that the austenite grain size increases with austenitizing temperature and holding time. When the austenitizing temperature is above 1100℃, the austenite grains grow rapidly, and abnormal austenite grains occur. In addition, the effect of heating rate on austenite grain growth was investigated, and the relation between austenite grains and bainite morphology after bainitic transformations was also discussed.  相似文献   

20.
用扩散界面相场模型研究陶瓷烧结过程中五球模型内部的气孔扩散与演化过程。采用一组随时间和空间连续变化的取向场变量和浓度场变量来表征烧结过程微结构特征,用Ginzburg-Laudau动力学方程和Cahn-Hilliard动力学方程分别描述取向场变量和浓度场变量随时间的演化。结果表明,陶瓷烧结过程中,颗粒间的气孔通过晶界向较大的气孔扩散聚集,颗粒内部的气孔则通过晶粒基体内部向颗粒间的空隙和颗粒外部空间扩散。陶瓷颗粒的气孔通过晶界或基体扩散到晶粒外部空间的过程,就是陶瓷坯体烧结的致密化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号