首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Selective laser melting (SLM) technology plays an important role in the preparation of porous titanium (Ti) implants with complex structures and precise sizes. Unfortunately, the processing characteristics of this technology, which include rapid melting and solidification, lead to products with high residual stress. Herein, an in situ method was developed to restrain the residual stress and improve the mechanical strength of porous Ti alloys during laser additive manufacturing. In brief, porous Ti6Al4V was prepared by an SLM three-dimensional (3D) printer equipped with a double laser system that could rescan each layer immediately after solidification of the molten powder, thus reducing the temperature gradient and avoiding rapid melting and cooling. Results indicated that double scanning can provide stronger bonding conditions for the honeycomb structure and improve the yield strength and elastic modulus of the alloy. Rescanning with an energy density of 75% resulted in 33.5%–38.0% reductions in residual stress. The porosities of double-scanned specimens were 2%–4% lower than those of single-scanned specimens, and the differences noted increased with increasing sheet thickness. The rescanning laser power should be reduced during the preparation of porous Ti with thick cell walls to ensure dimensional accuracy.  相似文献   

2.
Selective laser melting(SLM) technology plays an important role in the preparation of porous titanium(Ti) implants with complex structures and precise sizes. Unfortunately, the processing characteristics of this technology, which include rapid melting and solidification,lead to products with high residual stress. Herein, an in situ method was developed to restrain the residual stress and improve the mechanical strength of porous Ti alloys during laser additive manufacturing. In brief, porous Ti6 Al4 V was prepared by an SLM three-dimensional(3 D)printer equipped with a double laser system that could rescan each layer immediately after solidification of the molten powder, thus reducing the temperature gradient and avoiding rapid melting and cooling. Results indicated that double scanning can provide stronger bonding conditions for the honeycomb structure and improve the yield strength and elastic modulus of the alloy. Rescanning with an energy density of 75%resulted in 33.5%–38.0% reductions in residual stress. The porosities of double-scanned specimens were 2%–4% lower than those of singlescanned specimens, and the differences noted increased with increasing sheet thickness. The rescanning laser power should be reduced during the preparation of porous Ti with thick cell walls to ensure dimensional accuracy.  相似文献   

3.
Rapid prototyping (RP) is a computerized fabrication technology that additively builds highly complex three-dimensional physical objects layer by layer using data generated by computer, for example CAD or digital graphic. Three-dimensional printing (3DP) is one of such technologies that employ ink-jet printing technology for processing powder materials. During fabrication, a printer head is used to print a liquid on to thin layers of powder following the object’s profile as generated by the system computer. This work looks at redesigning 3DP machine, using piezoelectric demand-mode technology head in order to improve accuracy, surface finishing and color quality of constructed models. The layers created with aforesaid system are between 25 to 150 μm (steps of 25 μm).  相似文献   

4.
A brief review of color-matching technology and its application of printing RGB images by CMY or CMYK ink-jet printers is presented, followed by an explanation to the conventional approaches that are commonly used in color-matching. Then, a four-color matching method combining neural network with genetic algorithm is proposed. The initial weights and thresholds of the BP neural network for RGB-to-CMY color conversion are optimized by the new genetic algorithm based on evolutionarily stable strategy. The fourth component K is generated by using GCR (Gray Component Replacement) concept. Simulation experiments show that it is well behaved in both accuracy and generalization performance.  相似文献   

5.
On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were studied, then the blasting parameters were designed and tested by a model test in laboratory and field experiment. The experimental and test results showed that the energy from blasting is directionally concentrated for the cumulative action. The directional expansion of cracks is satisfactory, the results of the model test and field test suggested that the orientation fracture blasting with shaped charge is a good means of excavating tunnels or cutting rock.  相似文献   

6.
Selective laser melting(SLM),an additive manufacturing process mostly applied in the metal material field,can fabricate complex-shaped metal objects with high precision.Nickel-based superalloy exhibits excellent mechanical properties at elevated temperatures and plays an important role in the aviation industry.This paper emphasizes the research of SLM processed Inconel 718,Inconel 625,CM247LC,and Hastelloy X,which are typical alloys with different strengthening mechanisms and operating temperatures.The strengthening mechanism and phase change evolution of different nickel-based superalloys under laser irradiation are discussed.The influence of laser parameters and the heat-treatment process on mechanical properties of SLM nickel-based superalloys are systematically introduced.Moreover,the attractive in-dustrial applications of SLM nickel-based superalloy and printed components are presented.Finally,the prospects for nickel-based superalloy materials for SLM technology are presented.  相似文献   

7.
The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that the mechanical properties of the material (in a tubular form) are quite different from those found in the standard tensile tests (when the materials are in bar forms). This is one of the major reasons that result in the discrepancies in the outcomes of experimental study, FEM calculations, and spring-back analysis. It is therefore of crucial importance to study the mechanical properties of the materials in their tubular forms. The experiments and FEM simulations prove that the spring-back angle is significantly affected by the mechanical properties of the materials. The angle decreases accordingly with plastic modulus, but changes inversely with the hardening index and elastic modulus The spring-back angle is also affected by the conditions of tube deformation: it increases accordingly with the relative bending radius but changes inversely with the relative wall thickness. In addition, the spring-back angle increases nonlinearly with the bending angle.  相似文献   

8.
Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the syn- thesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass-ceramics, and geopolymer foams. Representative sil- icon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”  相似文献   

9.
Important advances have been made in the field of geochemistry since nanometer science and technology were introduced into the field of geoscience. The nanometer particulates have been discovered in naturally-occurring ore deposits, volcano-eruptive materials and geo-gases, and a more detailed exploration of the metallogenic mechanism of endogenic metallic ore deposits has been conducted. It is considered that some ore-forming metals may transport in the form of native particulates. Because they have very strong capabilities of adsorption, adsorption is always regarded as an important mechanism of metallogenesis under supergenic and low temperature conditions. Therefore, a new technology of ore exploration has also been developed. This paper attempts to review the new advances in geochemical research on nanometer materials, as well as its perspectivess.  相似文献   

10.
The preparation and the mechanism study of bulk pure rare-earth metals with amorphous and nanocrystalline structures, which were produced by spark plasma sintering (SPS), were carried out in this paper. With different processing parameters, the amorphous, two phases of amorphous and nanocrystalline, and complete nanocrystalline microstructures have been obtained. The nano-grain sizes in the bulk nanocrystalline materials are found smaller than the original powder particles sizes, which may change the conventional viewpoint that the grains in the sintered bulk are generally coarser than the raw powder particles. The technique developed in the present work can be extended to the preparation of many other nano bulk metal materials, and thus enables the studies of the nano-size effects on the physical, chemical and mechanical properties of bulk nano materials.  相似文献   

11.
12.
基于增材制造原理的3D打印技术因其打印精度高、周期短、可个性化定制、打印材料多样化等优点,在许多研究领域得到广泛应用。在岩石力学研究中,该技术也展现出超越传统研究方法的优势。本文从文献计量角度简要分析了3D打印的发展趋势及其在岩石力学研究中的应用情况,综述该技术在小尺度力学样品与大尺度物理模型试样中的应用现状,分析影响3D打印岩石样品力学强度的因素,总结3D打印制作岩石样品的应用流程及应用效果,最后展望其在岩石力学研究中的应用前景。  相似文献   

13.
为了研究非线性超声检测技术评估材料抗拉强度的可行性,对不同成型角度下的3D打印铝合金材料进行非线性超声检测和力学拉伸试验。结果表明材料的抗拉强度、微观缺陷比率和超声非线性系数三者之间有很强的相关性。随着材料微观缺陷比率增大,超声非线性系数也随之增大,而抗拉强度呈现变小的趋势,因此超声非线性系数可以评价材料的强度。此外,对不同成型角度下的3D打印铝合金试件进行疲劳试验,发现疲劳加载后试件的超声非线性系数随着微裂纹萌生而增大。因此,非线性超声检测技术可用于3D打印铝合金材料力学性能的评估和微裂纹的检测。  相似文献   

14.
 相对于传统的矫形鞋垫制作方法,3D打印矫形鞋垫具有集约高效的特点,但目前在设计、打印、材料等方面仍存在一些问题,且缺乏系统的研究综述。以矫形鞋垫的制作方法为切入点,综述了3D打印矫形鞋垫的打印工艺、打印材料及研究现状,分析了目前3D打印矫形鞋垫研究存在的问题,并结合矫形鞋垫性能的提升和现代科学技术的发展,预测了3D打印矫形鞋垫的未来发展趋势。  相似文献   

15.
 3D打印是基于材料累加原理,将计算机中的三维模型通过分层添加材料打印出实物的一种增材制造技术。2020年,3D打印研究在打印机理、技术改进及应用拓展等方面取得了重要进展。从打印方法改进、新型墨水研发、新型结构制备和应用,以及金属3D打印机理研究等方面回顾了3D打印的年度研究热点和代表性成果。  相似文献   

16.
3D打印金属材料研究进展   总被引:1,自引:0,他引:1  
3D打印技术是快速原型制造技术的一种,也被称为增材制造技术,被誉为"第三次工业革命"的核心技术,其中金属3D打印被认为是将来制造业的主导方向.金属粉末材料是金属打印的物质基础,同时也是3D打印技术发展的突破点.综述了3D打印金属粉体材料的研究现状,重点介绍了钛合金、铝合金、不锈钢、高温合金和镁合金等5种金属粉体材料在3D打印技术中的应用,并对金属粉体材料的运用进行总结和展望.  相似文献   

17.
 增材制造作为智能制造的一部分已经被科研及工业界广泛关注。印刷电子和3D打印是两个典型的增材制造技术案例。在锁定增材制造的前提下,本文着重介绍了这两项技术的工艺发展历史和现状;通过对电子和光电器件的可印刷结构和性能的综述,引申出对增材制造工艺和功能性材料进一步优化的实际需求。这一生产工艺和材料系统的同时优化和创新将最大限度地发挥增材制造优势,从而促进应用市场的开发,加速中国制造2025的进程。  相似文献   

18.
4D打印技术是结合了3D打印技术和智能材料的一种智能结构增材制造技术,形状记忆聚合物材料在4D打印领域中具有巨大的应用潜力.该文阐述了4D打印原理及常用的4D打印材料,基于4D打印材料的不同响应方式,列举相关典型期刊和专利对现有以形状记忆聚合物材料为原料的4D打印材料的技术发展动向进行论述,对4D打印聚合物材料发展面临的难点问题进行总结,并预测了该领域未来的发展方向.  相似文献   

19.
三维现今地应力场有限元数值计算   总被引:2,自引:0,他引:2  
研究现今地应力场的分布规律对油气藏的勘探、开发有重要的指导意义.依据Petrel地质模型网格节点数据,建立有限元三维精细几何模型,并对岩体和断层进行不同尺寸的网格剖分.综合利用地球物理测井与岩芯资料,采用VB.net编程求得三维岩石力学参数,根据单元中心坐标分别赋予相应的参数.运用大型有限元软件ANSYS建立了塔里木盆地##2地区三维有限元模型,以测井应力解释剖面为井点应力约束条件,经过多次反演试算得到模型的合理边界条件.与现场资料数据比较发现:数值模拟结果吻合性较好.可为三维现今地应力场的模拟提供数值计算方法.  相似文献   

20.
近年来,受益于3D打印先进制造技术和机器学习设计方法的快速发展,机械超材料的研究取得了卓越的成果,实现了一系列自然界罕见甚至不存在的反常规、反直觉的力学性能.与自然材料不同,机械超材料的性质主要来源于人工结构而非材料本身化学组分,故而具有巨大的设计空间.2021年,机械超材料领域涌现出了一批非常优秀的工作.从机械超材料...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号