首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
Batteries membrane materials are widely used in new energy automotives such as hybrid vehicles,fuel cell vehicles,and pure electric vehicles.Membrane consists of two categories:fuel cell membrane(power unit) and power battery membrane(charge and discharge device).With rapid development of the processes and technology of cell membrane materials,there is urgent need to study their properties and service life.The article summarizes the recent research progress in proton exchange membrane materials,lithium battery separator materials,and nickel-hydrogen battery separator materials.Based on our laboratory research,the paper features the affecting factors and mitigation strategy of performance and service life for automotive battery membrane materials.Future direction for the batteries membrane material of new energy automotive is discussed.  相似文献   

2.
There are growing demands for the next generation lithium ion batteries with high energy density as well as high power performance for renewable energy storage and electric vehicles application.Recently,nanoscale materials with outstanding energy storage capability have received considerable attention due to their unique effect caused by the reduced dimensions.This review describes some recent developments of our group in research of transition metal nitride nanocomposites in application of energy storage,especially for lithium ion battery and supercapacitor.The strategies of mixed conduction(electron and ion) network with a favorable charge transportation interface in the design of the nanocomposites for such devices are highlighted.  相似文献   

3.
Electric bicycles powered by lead-acid batteries have developed very fast for several years in China. Because the inconvenience caused by the service performance and the inconsistency to the environmental protection policy of the lead-acid battery, the zinc-air power battery was proposed to solve the problem in this paper. The advantage and the feasibility of developing zinc-air power batteries in China have been illustrated in the paper. And, it is represented that development of electric bicycles powered by the zinc-air power battery also can accelerate this kind of battery's development in other electric vehicles, which is favorable to economic development and environmental protection.  相似文献   

4.
1 Results Lithiumion batteries have become the power source of choice for consumer electronic devices such as cell phones and laptop computers due to their high energy density and long cycle life. In addition,lithium-ion batteries are expected to be a major breakthrough in the hybrid vehicle field.Despite their successful commercial application,further performance improvement of the lithium ion battery is still required.Nanomaterials and nanotechnologies can lead to a new generation of lithium secondary batteries.Here we present recent progress on nanocomposite materials and nanotechniques in our studies for anode materials of lithium rechargeable batteries.  相似文献   

5.
Li-ion batteries hold an important place in the field of high power batteries because of their high open circuit voltage and associated high energy density. However, the safety is less satisfactory; therefore, the study of the factors that affect the safety of Li-ion batteries has much meaning to the safety design. In this paper, a set of apparatus was developed for in situ measurements, and several commercial materials including electrolyte, separator and electrode materials for Li-ion batteries were investigated by the in situ method. The results showed: 1) The electrolyte vapor pressure is influenced significantly by the component with low boiling point and increases rapidly with the increasing of temperature; 2) the shutdown of separator occurs at around 135℃ and the impedance increases approximately by two orders of magnitude; 3) carbon anode materials affect the most the volume changes of the cell, and the change for a graphite anode is much greater than that of a glassy carbon anode.  相似文献   

6.
All-solid-state lithium-ion batteries are lithiumion batteries with solid-state electrolytes instead of liquid electrolytes.They are hopeful in solving the safety problems of lithium-ion batteries,once their large capacity and long life are achieved,they will have broad application prospects in the field of electric vehicles and large-scale energy storage.The working potential window of solid electrolytes is wider than that of liquid electrolytes,so high-voltage cathode materials could be used in all-solidstate lithium-ion batteries to get higher energy density and larger capacity by elevating the working voltage of the batteries.The spinel LiNi0.5Mn1.5O4material,layered Li–Ni–Co–Mn–O cathode materials and lithium-rich cathode materials can be expected to be applied to all-solid-state lithium-ion batteries as cathode materials due to their highvoltage platforms.In this review,the electrochemical properties and structures of spinel LiNi0.5Mn1.5O4material,layered Li–Ni–Co–Mn–O cathode materials and lithiumrich cathode materials are introduced.More attentions are paid on recent research progress of conductivity and interface stability of these materials,in order to improve their compatibility with solid electrolytes as cathode materials in all-solid-state lithium-ion batteries and fully improve the properties of all-solid-state batteries.Finally,the existing problems of their application in all-solid-state lithium-ion batteries are summarized,the main research directions are put forward and their application prospects in all-solid-state lithium-ion batteries are discussed.  相似文献   

7.
The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle (EV) batteries.In this paper,the research advances of existing battery test methods as well as driving cycles are reviewed.An electric vehicle model that consists of EV dynamics model,battery model and electric motor model is built.The dynamic characteristics of the battery in frequency domain are analyzed.Based on the EV model and the frequency domain characteristics of the battery,a driving cycle test procedure of EV battery is proposed.The battery test procedure is able to reflect the real-world characteristics of EV batteries,and can be used as a universal EV battery test method.  相似文献   

8.
Metal–air batteries(MABs) have been paid much more attention owing to their greater energy density than the most advanced lithium-ion batteries(LIBs). Rechargeable MABs are considered as promising candidates for the next-generation of energy storage techniques for applications ranging from large-scale energy storage systems to electric vehicles and portable devices. However, there are still numerous scientific problems that must be overcome before their commercial application. With the aim of pr...  相似文献   

9.
With the development of new energy industry,electric vehicle becomes the new development direction of the vehicle industry in the world.So the energy storage technology,as the electric vehicle’s important support and auxiliary technology,also gets more attention.This paper respectively not only analyzed and compared the storage principle,working characteristics of battery,hydraulic and flywheel accumulator used in the electric vehicles but described the advantages and disadvantages of them.It provided useful reference for the selection and further research of energy storage devices.  相似文献   

10.
1 Results Electrochemical energy storage devices such as lithium-ion batteries[1-2] and double-layer capacitors[3-4] have attracted a great deal of attention because of their potential application to electric hybrid vehicles. They utilize nonaqueous electrolyte solutions comprising from organic solvents and lithium or quaternary ammonium salts with fluorine-containing anions. This is because the relatively large anions with electron-withdrawing atoms enable ionic dissociation in dipolar aprotic solvents and afford enough oxidation potentials for high voltage devices.The author reviews their fundamental electrochemical properties such as electrolytic conductivity and electrochemical window based on our experimental results,and explains why fluoro-compounds are important for the electrochemical energy storage devices. Discussion is extended to ionic liquids[5],which recently receive much attention as a non-flammable and non-volatile electrolyte.  相似文献   

11.
The world's energy system is changing dramatically.Li-ion battery, as a powerful and highly effective energy storage technique, is crucial to the new energy revolution for its continuously expanding application in electric vehicles and grids.Over the entire lifetime of these power batteries, it is essential to monitor their state of health not only for the predicted mileage and safety management of the running electric vehicles, but also for an "end-of-life" evaluation for their repurpose.Electrochemical impedance spectroscopy(EIS) has been widely used to diagnose the health state of batteries quickly and nondestructively.In this review, we have outlined the working principles of several electrochemical impedance techniques and further evaluated their application prospects to achieve the goal of nondestructive testing of battery health.EIS can scientifically and reasonably perform real-time monitoring and evaluation of electric vehicle power batteries in the future and play an important role in vehicle safety and battery gradient utilization.  相似文献   

12.
就目前现有的电动汽车电池能源模块无法满足车辆实际性能需求的问题,提出了一种全新的电动车用电池能源模块,该模块是由锂离子电池与锌空气燃料电池进行配合组成的.首先分析了全球各个汽车企业就目前车用能源日趋紧张问题所提出的不同解决方案,指出了电动汽车发展前景乐观;其次,分析了应用于纯电动汽车的电池能源模块存在的瓶颈,提出了一个全新的电动车用电池能源模块的构想;然后,对该动力电池能源模块的优势进行分析,指出了该模块未来应用于电动汽车上的可行性;最后,就下一步开发该模块所要做的具体工作进行了介绍.  相似文献   

13.
电池安全问题是阻碍新能源汽车退役电池梯次再利用的关键因素,而电荷状态、电压和温度是判断电池安全状态的重要参数。基于此,提出基于实车数据的电池联合故障诊断。首先从实车数据平台获取数据,经过数据的预处理和螳螂算法优化K近邻(dung beetle optimizes K-nearest neighbor, DBO-KNN)算法进行特征提取,然后将提取的特征输入到建立的差分整合移动平均自回归(autoregressive integrated moving average model, ARIMA)故障诊断模型中,实现对电池单体的低压和过压的实时诊断和精准定位,最后通过电压、电池荷电状态(state of charge, SOC)和温度进行联合判断是否有触发热失控的风险,根据危险程度发出不同的报警等级。算例分析了故障特征提取准确率高达98.97%,不仅能精准定位单体发生异常的位置,还能提前9 s发生报警,有效预防了电池发生热失控的风险,验证了本文方法的有效性。实现了工程实际应用方面的较好效果,为未来动力电池梯次循环利用以及安全预警平台的研发奠定了基础。  相似文献   

14.
 动力电池安全性是新能源汽车大规模推广应用过程中,各方最关注的焦点问题之一。本文阐述锂离子动力电池作为车用电源系统的安全性问题及其有效的解决方案。动力电池系统安全性问题主要分为3个层次,即"演变"、"触发"和"扩展"。"演变"是指动力电池安全性事故发生之前,故障可能经历了长期的演化过程;"触发"是"演变"过程的转折点,也可以是突发情况破坏了动力电池系统,并导致安全性事故。阐述了锂离子动力电池热失控"触发"的机理,对于不同种类的热失控触发形式进行了分析。在动力电池安全性事故"触发"问题上,最为核心的问题是锂离子动力电池的热失控。热失控"触发"发生后,应防止热失控"扩展"的发生。论述了热失控"扩展"过程的机理,以便于提出更加合理的安全性设计方案,防范热失控"扩展"的发生,降低安全性事故造成的损害程度。基于热失控"演变"、"触发"与"扩展"的机理,提出了事故防范和安全性监控的多项措施。  相似文献   

15.
近年来,随着电动汽车行业的大力发展,锂离子电池作为电动交通工具储存和转化电能的重要载体大量涌入市场,但在使用过程中存在过充放电、局部过热以及外部挤压碰撞等滥用情况,可能会导致其性能下降,甚至引发热失控等安全问题。为此,对当前中外锂离子电池热失控的研究进展进行了综述总结,并通过VOSviewer可视化软件对发文量、期刊分布和关键词等进行分析。结果表明:当前锂离子电池的热失控是限制其发展的关键因素,目前主要从电池正极材料改性、电解液中添加阻燃剂、电池热管理设计三方面来提升锂离子电池的安全性。  相似文献   

16.
电动汽车续驶里程及其影响因素的研究   总被引:11,自引:2,他引:9  
研究了电动汽车续驶里程的计算方法,根据电池释放的能量与电动汽车消耗的能量相等的方法计算,使用BJD6100-EV电动公交车的有关参数,计算在不同速度下均速行驶时的续驶里程及阻力功率,建立电池均匀性对电池输出功率的影响模型,分析整车参数,环境温度对电动汽车的续驶里程的影响,绘制相应的曲线,结合对BJD6100-EV电动公交车的道路试验,验证了续驶里程的计算方法及续驶里程的影响因素,并提出了增加续驶里程的措施。  相似文献   

17.
为了提高纯电动汽车的续驶里程估算精度,降低因电动汽车续驶里程估计不准确而出现的"里程焦虑",提出一种基于电池循环寿命的纯电动汽车续驶里程估算方法。首先,以纯电动汽车的整体性能分析为基础,将汽车续驶里程估算中电池循环使用时长问题,通过卡尔曼滤波算法转化为代价函数逼近最小值问题,确定电池循环使用寿命。其次,通过计算电池组剩余能量和已行驶里程,计算出纯电动汽车单位里程能耗;最后,计算出纯电动汽车循环工况续驶里程。实验结果表明,采用该方法对纯电动汽车续驶里程进行估算准确性较高,估算误差最低为2. 5%,提高了对纯电动汽车续驶里程的估算精度。  相似文献   

18.
提出一种基于粒子群算法和锂电池经验容量模型的对电池实际工况下的健康状态进行估计的新方法.建立了电动汽车实际运行工况下充电曲线特征与电池健康度的线性模型.辅以电池经验容量模型,使之符合监督学习的实际情况并能够用计算机对参数进行拟合.以美国航天航空局电池老化数据建立训练集与验证集,对模型进行训练,并对训练好的模型进行实验验证.实验表明SOH估计误差都在7%以下,在实际工况中能够快速对电动汽车锂电池的健康度进行准确估计.   相似文献   

19.
电动低地板城市大客车研制中的关键技术   总被引:1,自引:0,他引:1  
讨论电动低地板城市大客车研制过程中的关键技术,对电源及电力驱动系统匹配、总体布置及性能分析、结构优化及轻量化设计、电池管理及高压安全技术等方面所遇到的问题及解决办法进行了全面的论述.这些关键技术在低地板车的应用已在整车的型式论证试验和试运营过程中得到了验证,有助于电动汽车技术的普及和实用化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号