首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
Along with slurry concentration and particle density, particle size distribution (PSD) of tailings also exerts a significant influence on the yield stress of cemented paste, a non-Newtonian fluid. In this work, a paste stability coefficient (PSC) was proposed to characterize paste gradation and better reveal its connection to yield stress. This coefficient was proved beneficial to the construction of a unified rheological model, applicable to different materials in different mines, so as to promote the application of rheology in the pipeline transportation of paste. From the results, yield stress showed an exponential growth with increasing PSC, which reflected the proportion of solid particle concentration to the packing density of granular media in a unit volume of slurry, and could represent the properties of both slurry and granular media. It was found that slurry of low PSC contained extensive pores, generally around 20 μm, encouraging free flow of water, constituting a relatively low yield stress. In contrast, slurry of high PSC had a compact and quite stable honeycomb structure, with pore sizes generally < 5 μm, causing the paste to overcome a higher yield stress to flow.  相似文献   

2.
Along with slurry concentration and particle density, particle size distribution(PSD) of tailings also exerts a significant influence on the yield stress of cemented paste, a non-Newtonian fluid. In this work, a paste stability coefficient(PSC) was proposed to characterize paste gradation and better reveal its connection to yield stress. This coefficient was proved beneficial to the construction of a unified rheological model, applicable to different materials in different mines, so as to promote the application of rheology in the pipeline transportation of paste. From the results, yield stress showed an exponential growth with increasing PSC, which reflected the proportion of solid particle concentration to the packing density of granular media in a unit volume of slurry, and could represent the properties of both slurry and granular media. It was found that slurry of low PSC contained extensive pores, generally around 20 μm, encouraging free flow of water, constituting a relatively low yield stress. In contrast, slurry of high PSC had a compact and quite stable honeycomb structure, with pore sizes generally 5 μm, causing the paste to overcome a higher yield stress to flow.  相似文献   

3.
A better understanding of solid-liquid separation would assist in improving the thickening performance and perhaps water recovery as well. The present work aimed to develop an empirical model to study the effects of ore properties on the thickening process based on pilot tests using a column. A hydro-cyclone was used to prepare the required samples for the experiments. The model significantly predicted the experimental underflow solid content using a regression equation at a given solid flux and bed level for different samples, indicating that ore properties are the effective parameters in the thickening process. This work confirmed that the water recovery would be increased about 5% by separating the feed into two parts, overflow and underflow, and introducing two different thickeners into them separately. This is duo to the fact that thickeners are limited by permeability and compressibility in operating conditions.  相似文献   

4.
A numerical model was established to simulate the flow field in a Peirce-Smith converter bath, which is extensively adopted in copper making. The mean phase and velocity distribution, circular area, and mean wall shear stress were calculated to determine the optimal operation parameter of the converter. The results showed that the slag phase gathered substantially in the dead zone. The circular flow was promoted by increasing the gas flow rate, Q, and decreasing the nozzle height, h. However, these operations significantly aggravate the wall shear stress. Reducing the nozzle diameter, d, increases the injection velocity, which may accelerate the flow field. However, when the nozzle diameter has an interval design, the bubble behaviors cannot be combined, thus, weakening the injection efficiency. Considering the balance between the circular flow and wall shear stress in this model, the optimal operation parameters were Q=30000-35000 m3/h, h=425-525 mm, and d=40 & 50 mm.  相似文献   

5.
杨洪海  Sameer  Khandekar  Sanka  V.  V.  S.  N.  S.  Manyam  Manfred  Groll 《东华大学学报(英文版)》2007,24(4):439-444
Mathematical modeling of pulsating heat pipes through 'first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phaseflow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent 'open flow' system. The model allows prediction of two-phase flow parameters in each subsection of the device thereby providing important insights into its operation. The concept of 'void fraction constraint'in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined.  相似文献   

6.
A three-dimensional model of a hot extrusion die was developed by using ANSYS software and its second development language—ANSYS parametric design language. A finite element analysis and optimum design were carried out. The three-dimensional stress diagram shows that the stress concentration is rather severe in the bridge of the hot extrusion die, and that the stress distribution is very uneven. The optimum dimensions are obtained. The results show that the optimum height of the extrusion die is 89.596mm.The optimum radii of diffluence holes are 65.048 mm and 80.065mm. The stress concentration is reduced by 27%.  相似文献   

7.
The sulfuric acid leaching kinetics of South African chromite was investigated. The negative influence of a solid product layer constituted of a silicon-rich phase and chromium-rich sulfate was eliminated by crushing the chromite and by selecting proper leaching conditions. The dimensionless change in specific surface area and the conversion rate of the chromite were observed to exhibit a proportional relationship. A modified shrinking particle model was developed to account for the change in reactive surface area, and the model was fitted to experimental data. The resulting model was observed to describe experimental findings very well. Kinetics analysis revealed that the leaching process is controlled by a chemical reaction under the employed experimental conditions and the activation energy of the reaction is 48 kJ·mol-1.  相似文献   

8.
A 2-D finite point meshless model was used to simulate the heat transfer and solidification of steel in continuous casting molds to illustrate its use in metallurgy. The latent heat of the pure metal was treated using the temperature recovery method and the latent heat of the alloy was treated using an apparent heat capacity method. The model was validated by calculating the classical Stefan moving boundary problem. Analysis of the solid shell growth and temperature distribution of a billet in a mold shows that the solution by the finite point meshless model is quite reasonable, which indicates that the model has potential in metallurgical engineering applications.  相似文献   

9.
A new method called mixed Lagrangian and Eulerian (MiLE) method was used to simulate the continuous casting process in a mold of free-cutting steel 38MnVS. The simulation results are basically in agreement with experimental data in the literature, achieving the three-dimensional visualization of temperature distribution, melt flow, shell thickness, and stress distribution of blooms in a mold. It is shown that the flow velocity of steel melt becomes smaller gradually as the casting proceeds. When the flow reaches a certain depth, two types of flow patterns can be observed in the upper zone of the mold. The first flow pattern is to flow downwards, and the second one is to flow upwards to the meniscus. The corner temperature is higher, and the thickness is thinner than those in the mid-face. The effective stress in the corner area is much bigger than that in the mid-face, indicating that the corner area is the dangerous zone of cracking.  相似文献   

10.
The influence of gases on unsaturated soils is discussed in the paper.First,the selection of stress state variables is discussed.It is shown that gas pressure as well as generalized effective stress and modified suction are required to construct a constitutive model of an unsaturated soil.The deformation mechanisms of solid,liquid and gas phases in soils are then investigated.It is realized that the deformation of gas phase interacts with the deformations of the other two phases in soils.Gas laws are used to describe the gas behavior.Similar to the other two phases in soil,the change of gas volume can be divided into an elastic part and a plastic part, and the latter part is then introduced to the soil hardening equation to reflect the impact of the gas on the soil.Then,a simple elasto-plastic model considering the gas effect for isotropic states is developed.Finally,the model predictions are given and compared with existing experimental data.A good agreement between them is found.Comparisons of the predictions between our model and Wheeler’s model are also performed.  相似文献   

11.
The trouble-free and efficient operation of paste thickeners requires an optimal design and the cooperation of each component.When underflow discharging is suspended, alleviating the vast torque that the remaining solids within the thickeners may place on rakes mainly lies in the circulation unit. The mechanism of this unit was analyzed, and a mathematical model was developed to describe the changes in underflow solid content and yield stress. The key parameters of the circulation unit, namely, the height and flow rate, were varied to test its performance in the experiments with a self-designed laboratorial thickening system. Results show that the circulation unit is valid in reducing underflow solid fraction and yield stress to a reasonable extent, and the model could be used to describe its efficiency at different heights and flow rates. A suitable design and application of the circulation unit contributes to a cost-effective operation of paste thickeners.  相似文献   

12.
为了保证浓密机在高料位下不压耙,一般通过增设循环系统使料浆始终处于活化状态,降低耙架运行阻力.然而,目前循环参数对底流的影响规律不明确,造成系统的设计及应用缺乏科学依据,为此开展了循环参数对底流的调控研究.分析循环系统的作用原理,将循环系统作用范围划分为两大区域,揭示循环参数对底流的调控机制,运用微积分原理对区域内的底流体积分数变化进行求解,最终建立浓密机底流调控数学模型.最后,利用该模型对底流循环实验参数进行验证.研究结果表明:开启底流循环后,底流体积分数开始降低并最终趋于稳定,底流体积分数差随着循环流量及循环高度增大而增大,体积分数变化幅度为0.7%~2.2%,稳定所需时间随流量及高度增加而减小.该理论模型完全吻合验证结果函数,为循环系统的设计及运行提供理论依据.  相似文献   

13.
首先对膏体物料特性开展量化表征研究,通过分析膏体细观结构的物质组成,提出了一种全面描述物料特征的综合指标——固体填充率;开展膏体流变实验,基于宾汉模型对流变曲线进行拟合获得相应的屈服应力及塑性黏度,分析了体积分数、质量加权平均粒径、不均匀系数、细颗粒及水泥质量分数等因素对流变参数的影响规律,并从细观结构的角度对其影响机制进行了解释,最终构建了流变参数关于固体填充率的计算模型.研究结果表明:相同条件下,膏体屈服应力及塑性黏度随体积分数增大呈指数增大,随物料不均匀系数增大而减小,随细颗粒含量增大呈先减小再增大的变化趋势.  相似文献   

14.
通过对单体、乳化剂及工艺过程的选择,合成了丙烯酸酯类新型粘合剂PBAMM(Ⅰ)和增稠剂PMAEE(Ⅰ)及增稠剂PMAOE(Ⅱ)。所合成的粘合剂Ⅰ具有优良的配伍性能,且印花织物的牢度、色光、强度、手感等优良。增稠剂Ⅰ及Ⅱ既具有优良的增稠性能又有较强的耐电解质性,应用时少剂量即达要求,且能减少印花浆中的火油耗用量。尤其,当粘合剂Ⅰ与增稠剂Ⅰ或Ⅱ配套使用时,更具优越的加和应用性能。  相似文献   

15.
单回路循环流化床的压力平衡研究   总被引:1,自引:0,他引:1  
为保证流化床装置正常运行,循环回路必须有一个适宜的压力平衡关系。在Φ800 mm×12 000 mm流化床装置上,用多点压力测量仪对固体颗粒单循环回路各部分的压力分布进行了实验研究。结果表明,颗粒单循环回路的压力平衡与装置的运行状态、颗粒的循环量密切相关。整个颗粒的循环回路压力曲线呈“8”字形分布,上部流化器内的压力高于料腿内的压力,下部流化器内的压力低于料腿内的压力。流化速度增大可使颗粒的循环量增加。流化器和料腿内空隙率沿高度的变化趋势是上部大下部小。循环回路的压力分布取决于流化器和旋风管的性质。  相似文献   

16.
水泥与减水剂相容性的流变学研究   总被引:4,自引:1,他引:3  
通过考察水灰比、减水剂类型、水泥等因素对水泥与减水剂相容性及净浆流变性能的影响,研究相容性与浆体流变性能的关系,阐述了相容性的流变学含义.研究结果表明:掺减水剂的水泥净浆的流变特征符合一般宾汉姆流型或牛顿流型.Marsh筒法检测的流速是浆体屈服应力和黏度系数的综合反映;饱和点掺量与饱和点Marsh时间分别代表了浆体屈服应力和黏度系数降低至最小恒定值时对应的减水剂最小掺量,以及最小黏度系数的大小.  相似文献   

17.
天然裂缝性地层钻井中经常发生钻井液漏失,明确漏失规律对防漏堵漏十分重要。采用赫巴模式来描述钻井 液的流变性,建立了一维无限长裂缝地层中的钻井液漏失模型,研究了正压差、裂缝宽度、钻井液流变参数对漏失速率 及最终漏失量的影响。研究表明,赫巴模式钻井液的漏失速率曲线在双对数坐标下具有典型的3 段式特征,第一段和 第三段为直线,中间段为弧形;漏失速率随着压差和裂缝宽度的增加而非线性增加,随着稠度系数、流型指数和动切力 的增加而减小,但与裂缝宽度已不符合立方定律关系;最终漏失量随着压差、裂缝宽度平方的增加线性增加,随着动切 力增加线性减小,随着流型指数的增加非线性减小,而与稠度系数无关。研究对认清漏失规律及采取合理的防漏堵漏 措施具有参考意义。  相似文献   

18.
泥层高度和底流浓度是深锥浓密机最为重要的两个参数,因此有必要研究底流浓度随泥层高度的变化规律.采用自制小型深锥浓密机,对尾矿非连续/连续动态压密过程进行了物理实验;借助于有效孔隙比与泥层压强间遵循的Power函数关系,结合对尾矿颗粒的受力分析,推导出了底流浓度与泥层高度的数学模型,揭示了浓密机底流浓度与泥层高度的内在关系,并从尾矿颗粒空间结构的角度解释了该模型的变化规律;结合矿山生产对于底流浓度的要求,应用该数学模型,为其推荐了泥层高度的合理范围,验证了底流浓度数学模型的可靠性.该模型为深锥浓密机的设计和运行提供了理论依据.  相似文献   

19.
试验研制了建筑废弃砖粉-高钙粉煤灰基复合地聚合物,并系统研究了其凝结时间与流变性能.结果表明:地聚合物凝结时间随着废弃砖粉掺量的增加而缩短,随水玻璃模数的增大而逐渐缩短,随水玻璃用量的增加而延长,随养护温度的升高而迅速缩短;利用Matlab对固废基复合地聚合物的流变曲线进行拟合,发现实测数据符合赫切尔-巴尔克莱流体本构关系;随废弃砖粉掺量的增大,复合地聚合物浆体的屈服应力和稠度系数均呈增大趋势,流变指数相应降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号