首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deep structure at northern margin of Tarim Basin   总被引:5,自引:0,他引:5  
Zhao  JunMeng  Cheng  HongGang  Pei  ShunPing  Liu  HongBing  Zhang  JianShi  Liu  BaoFeng 《科学通报(英文版)》2008,53(10):1544-1554
In this paper, a 2D velocity structure of the crust and the upper mantle of the northern margin of the Tarim Basin (TB) has been obtained by ray tracing and theoretical seismogram calculation under the condition of 2D lateral inhomogeneous medium using the data of seismic wide angle reflection/refraction profile from Baicheng to Da Qaidam crossing the Kuqa Depression (KD) and Tabei Uplift (TU). And along the Baicheng to Da Qaidam profile, 4 of the 10 shot points are located in the northern margin of the TB. The results show that the character of the crust is uniform on the whole between the KD and TU, but the depth of the layers, thickness of the crust and the velocity obviously vary along the profile. Thereinto, the variation of the crust thickness mainly occurs in the middle and lower crust. The Moho has an uplifting trend near the Baicheng shot point in KD and Luntai shot point in TU, and the thickness of the crust reduces to 42 km and 47 km in these two areas, respectively. The transition zone between the KD and TU has a thickest crust, up to 52 km. In this transition zone, there are high velocity anoma- lies in the upper crust, and low velocity anomalies in the lower crust, these velocity anomalies zone is near vertical, and the sediment above them is thicker than the other areas. According to the velocity distributions, the profile can be divided into three sections: KD, TU and transition zone between them. Each section has a special velocity structural feature, the form of the crystalline basement and the relationship between the deep structure and the shallow one. The differences of velocity and tectonic between eastern and western profile in the northern margin of the Tarim Basin (NMTB) may suggest different speed and intensity of the subduction from the Tarim basin to the Tianshan orogenic belt (TOB).  相似文献   

2.
Recent mapping in the Gangdese block has revealed many leucogranites that are similar to those in the High Himalaya. These leucogranites formed at ~140 Ma as indicated by monazite Th-Pb ion-microprobe dating and cooled at ~130 Ma as indicated by muscovite ^40Ar/^39Ar dating. In conjunction with previous structural and paleogeographic studies, the new data indicate that the Gangdese block underwent crustal thickening and associated exhumation during ~140—130 Ma. In this regard, the southern margin of Eurasia continent was comparable to the modern South American Altiplano-Puna plateau, the prime example of active ocean-continent subduction and associated thickened crust. Specifically, the early stages of crustal thickening and uplifting of the Gangdese block may result from subduction of the Neo-Tethyan Ocean. If the Tibetan Plateau would form by accretion of a series of blocks with thickened crust, an elevated topographic plateau similar to the Altiplano-Puna plateau had formed before collision between the Indian and Eurasian plates. Then the Tibetan Plateau would have quickly thickened, uplifted, and begun to extend soon after onset of the collision. Thus, the deformational mechanism of the Tibetan Plateau is not distributed shortening, but rather concentrating deformation within regions of thin crust between the accreted blocks.  相似文献   

3.
Qiao  YanSong  Zhao  ZhiZhong  Wang  Yan  Fu  JianLi  Wang  ShuBing  Jiang  FuChu 《科学通报(英文版)》2009,54(24):4697-4703
The West Sichuan Plateau is located in the southeast margin of the Tibetan Plateau, where the climate is mainly influenced by the Indian southwest summer monsoon and the Tibetan Plateau monsoon. In this study, detailed geochemical analysis has been carried out on Ganzisi loess-paleosol sequence in Ganzê County of western Sichuan Province. The results indicate that Ganzê loess and paleosol have experienced the incipient stage of chemical weathering in dust source regions, characterized by the decomposition of plagioclase which caused the depletion of mobile elements Na and Ca. The post-depositional chemical weathering is characterized by carbonate dissolution and oxidation of Fe2+. The variations of some geochemical indexes (such as CIA values, Na/K and Fe2+/ Fe3+ ratios) in Ganzisi loess-paleosol sequence indicate a gradually decreased chemical weathering intensity in the dust source regions and deposition areas since 1.15 Ma BP consistent with the general increase of global ice volume, reflecting that the arid trend since 1.15 Ma BP in the southeast Tibetan Plateau is a regional response to the global climate change. The geochemical indexes in this section also reveal an obvious drying step occurred at about 250 ka BP in this region. We interpret this drying step as a result of decreased influence of the Indian southwest summer monsoon. This decrease in monsoon moisture is probably attributable to the uplift of the southeast margin of the Tibetan Plateau at about 250 ka BP.  相似文献   

4.
Zhang  KaiJun  Tang  XianChun 《科学通报(英文版)》2009,54(15):2556-2567
Eclogites have been recently reported in the interior of the Tibetan Plateau, including in the central Qiangtang metamorphic belt, in the Basu metamorphic massif of the eastern Bangong-Nujiang suture zone, and at Songdo and Pengco in the eastern Lhasa terrane. Some typical ultrahigh-pressure (UHP) metamorphic phenomena, e.g., garnet exsolution from clinopyroxene, were documented in the Basu and Pengco eclogites. The UHP metamorphism in the interior of the Tibetan Plateau marked by these eclogites generally took place in the Early Mesozoic. Along with exhumation of these eclogites, (post-) collision-related magmatism extensively occurred around the central Qiangtang belt, the eastern Bangong-Nujiang suture zone, and the eastern Lhasa terrane. The occurrence of these Early Mesozoic eclogites manifests an out-of-sequence evolution of the Tethys, and they could be a product of diachronous collision between the eastern Qiangtang terrane and the irregular continental margin of the united western Qiangtang-Lhasa plate, along the linked eastern Bangong-Nujiang-central Qiangtang zone. The collision-related magmatic rocks could have been originated from lithospheric thickening, melting, or detachment due to the collision. The presence of UHP metamorphic rocks in central Qiangtang and Basu implies likely continental deep-subduction, and the denudation of these two metamorphic zones could have served as the source of the Triassic turbidites in the Songpan-Garze complex and the Jurassic turbidites in the western Bangong-Nujiang zone, respectively. However, studies of the eclogites in the interior of the Tibetan Plateau just began, and many principal aspects still remain to be explored, such as their distributions, typical lithologies and minerals, temperature-pressure conditions, timing of formation and exhumation, protoliths and tectonic setting, and relationship with the evolution of the Tethys and large-scale basins in Tibet.  相似文献   

5.
In this paper, cut marks on the long bones of class Ⅱ sized animals in the Ma'anshann site are studied. Based on the location and frequencies of the long bone cut marks, the distribution characteristics are analyzed as follows: (1) cut mark frequencies in the lower layer (LL) are much higher than those of the upper; (2) in the LL cut mark frequency of the upper limbs is the highest, and that of the middle and lower limbs is lower and the lowest; (3) In the upper layer (UL) the cut mark frequency, does not spread as orderly as in the LL. The data are compared to those of the experiment and it is demonstrated that values of the LL all fall into the experimental 95% confidence intervals, and the cut mark frequencies of the upper, middle and lower limbs coincide with those of the experiment; while the values of the UL are much lower, of which, those of the humerus, femur and radius are out of the intervals, and the frequencies of the upper, middle and lower limbs are far more different from those of the experiment. It implies that the earlier hominids (of the LL) defleshed the limbs of the class Ⅱ sized animals with stone tools more completely than the later hominids. With the evidence of burning marks, it is suggested that the difference on the roasting behaviors derived the cut mark difference of the Ma'anshan UL and LL.  相似文献   

6.
The Ramba gneiss dome, one of the north Himalayan gneiss domes, is composed of three tectono-lithologic units separated by an upper and a lower detachment fault. Low-grade metamorphic Tethyan Himalayan sedimentary sequence formed the upper unit above the brittle upper detachment fault. Mylonitic gneiss and a leucogranite pluton made up the lower unit beneath the ductile lower detachment fault. Mylonitic middle-grade garnet-, staurolite- and andalusite-schist constituted the middle unit between the two faults, which may be that the basal part of the upper unit experienced detachment shear. The Ramba dome underwent three episodes of deformation in its tectonic evolution. The first episode was a top-down-to-north-northwest sliding possibly related to the activity of the south Tibetan detachment system (STDS). The second episode was the dominant deformation related to a east west extension, which resulted in a unique top-down-to-east kinematics and the major tectonic features of the dome. The third episode was a collapse sliding toward the outsides of the dome. The Ramba gneiss dome is possibly a result of the east-west extension and magmatic diapir. The lower detachment fault is probably the main detachment fault separating the sedimentary sequence from the crystalline basement during the eas-west extension in the dominant deformation episode. The diapir of the leucogranite pluton formed the doming shape of the Ramba gneiss dome. This pluton intruded in the core of the dome in a late stage of the dominant deformation, and its Ar-Ar cooling ages are about 6 Myr. This indicates that the dominant deformation of the dome happened at the same time of the east west extension represented by the nort-south trending rifts throughout the northern Himalaya and southern Tibet. Therefore, the formation of the Ramba gneiss dome should be related to this east west extension.  相似文献   

7.
Qi  Li  He  JinHai  Zhang  ZuQiang  Song  JinNuan 《科学通报(英文版)》2008,53(1):131-136
Based on analysis of the climatic temperature latitudinal deviation on middle troposphere, its seasonal cycle suggests that due to the rapid warming from eastern China continent to the east of Tibetan Plateau and the heating of Tibetan Plateau in spring, seasonal transition of the thermal difference between East Asia continent and West Pacific first takes place in the subtropical region with greatest intensity. On the accompanying low troposphere, the prevailing wind turns from northerly in winter to southerly in summer with the convection precipitation occurring at the same time. This maybe indicates the onset of the East Asian subtropical summer monsoon. Consequently, we advice that the seasonal cycle formed by the zonal thermal contrast between Asian continent and West Pacific may be an independent driving force of East Asian subtropical monsoon.  相似文献   

8.
A portable 3-component broadband digital seismic array was deployed across the Tianshan orogenic belt (TOB) to investigate the lithospheric structure. Based on receiver function analysis of the teleseismic P-wave data, a 2-D S-wave velocity profile of the boundary area of the TOB and the Tarim Basin was obtained at the depths of 0--80 km.Our results reveal a vertical and lateral inhomogeneity in the crust and uppermost mantle. Four velocity interfaces divide the crystalline crust into the upper, middle and lower crust. A low velocity zone is widely observed in the upper-middle crust. The depth of Moho varies between 42 and 52 km. At the north end of the profile the Moho dips northward with a vertical offset of 4--6 km, which implies a subduction front of the Tarim Basin into the TOB. The Moho generally appears as a velocity transitional zone except beneath two stations in the northern Tarim Basin, where the Moho is characterized by a typical velocity discontinuity. The fine velocity structure and the deep contact deformation of the crust and upper most mantle delineate the north-south lithospheric shortening and thickening in the boundary area of the TOB and the Tarim Basin, which would be helpful to constructing the geodynamical model of the intracontinental mountain-basin-coupling system.  相似文献   

9.
Systematical studies of post-collisional igneous rocks in the Dabie orogen suggest that the thickened mafic lower crust of the oro- gen was partially melted to form low-Mg# adakitic rocks at 143-131 Ma. Delamination and foundering of the thickened mafic lower crust occurred at 130 Ma, which caused the mantle upwelling and following mafic and granitic magmatic intrusions. Mig- matite in the North Dabie zone, coeval with the formation of low-Mg# adakitic intrusions in the Dabie orogen, was formed by partial melting of exhumed ultrahigh-pressure metamorphic rocks at middle crustal level. This paper argues that the partial melting of thickened lower and middle crust before mountain-root collapse needs lithospheric thinning. Based on the geothermal gradient of 6.6~C/km for lithospheric mantle and initial partial melting temperature of ~1000~C for the lower mafic crust, it can be estimated that the thickness of lithospheric mantle beneath thickened lower crust has been thinned to 〈45 km when the thickened lower crust was melting. Thus, a two-stage model for mountain-root removal is proposed. First, the lithospheric mantle keel was partially removal by mantle convection at 145 Ma. Loss of the lower lithosphere would increase heat flow into the base of the crust and would cause middle-lower crustal melting. Second, partial melting of the thickened lower crust has weakened the lower crust and increased its gravity instability, thus triggering delamination and foundering of the thickened mafic lower crust or mountain-root collapse. Therefore, convective removal and delamination of the thickened lower crust as two mechanisms of lithospheric thin- ning are related to causality.  相似文献   

10.
Much attention has been paid in the last two decades to the physical and chemical processes as well as temporal-spatial variations of the lithospheric mantle beneath the North China Craton. In order to provide insights into the geodynamics of this variation, it is necessary to thoroughly study the state and structure of the lithospheric crust and mantle of the North China Craton and its adjacent regions as an integrated unit. Based on the velocity structure of the crust and upper mantle constrained from seismological studies, this paper presents various available geophysical results regarding the lithosphere thickness, the nature of crust-mantle boundary, the upper mantle structure and deformation characteristics as well as their tectonic features and evolution systematics. Combined with the obtained data from petrology and geochemistry, a mantle flow model is proposed for the tectonic evolution of the North China Craton during the Mesozoic-Cenozoic. We suggest that subduction of the Pacific plate made the mantle underneath the eastern Asian continent unstable and able to flow faster. Such a regional mantle flow system would cause an elevation of melt/fluid content in the upper mantle of the North China Craton and the lithospheric softening, which, subsequently resulted in destruction of the North China Craton in different ways of delamination and thermal erosion in Yanshan, Taihang Mountains and the Tan-Lu Fault zone. Multiple lines of evidence recorded in the crust of the North China Craton, such as the amalgamation of the Archean eastern and western blocks, the subduction of Paleo-oceanic crust and Paleo-continental residue, indicate that the Earth in the Paleoproterozoic had already evolved into the plate tectonic system similar to the present plate tectonics.  相似文献   

11.
Analysis of the taxonomy and stratigraphic distribution of the Early Cambrian eodiscoid trilobites of the Yangtze Platform indicates that species of Tsunyidiscus and Hupeidiscus can be used for biostratigraphic correlation. T. aclis occurs only in the lower Qiongzhusian, T. armatus occurs in the lower and middle Qiongzhusian, while T. niutitangensis and T. tingi occur mainly in the middle and upper Qiongzhusian, with only T. tingi extending upward into the lower Canglangpuian. H. orientalis first appears in the upper Qiongzhusian, reaching peak abundance in the lower Canglangpuian and becoming extinct above the Drepanuroides Zone. Biostratigraphic and lithostratigraphic correlations indicate that the limestone in the lower part of the Mingxinsi Formation, the Upper Member of Jiumenchong Formation, and the upper part of the Middle Member of the Huangbailing Formation, can be correlated with each other as Hupediscus, an index fossil of the lower Canglangpuian, is abundant in all these units. The lower part of the Niutitang and Jiumenchong formations in eastern Guizhou, which mainly represent Qiongzhusian strata, can be correlated with the Lower Member of the Huangbailing Formation. The basal part of the Niutitang Formation, which may be equivalent to the Upper Meishucunian Shiyantou Formation in eastern Yunnan, is very condensed. Well-preserved sponge faunas and non-mineralized fossils in the lower part of the Niutitang and Hetang formations are not older than Qiongzhusian in age.  相似文献   

12.
A detailed 3-D P-wave velocity model of the crust and uppermost mantle under the capitol region is determined with a spatial resolution of 25 km in the horizontal direction and 4-17 km in depth. We used 48750 precise P-wave arrival time data from 2973 events of local crustal earthquakes, controlled seismic explosions and quarry blasts. These events were recorded by 123 seismic stations. The data are analyzed by using a 3-D seismic tomography method. Our tomographic model provides new information on the geological structure and complex seismotectonics of this region. Different patterns of velocity structures show up in the North China Basin, the Taihangshan and the Yanshan Mountainous areas. The velocity images of the upper crust reflect well the surface geological, topographic and lithological features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocity belts, respectively, which are oriented in NE-SW direction. The trend of velocity anomalies is the same as that of major structure and tectonics. Paleozoic strata and Pre-Cambrian basement rocks outcrop widely in the Taihangshan and Yanshan uplift areas, which exhibit strong and broad high-velocity anomalies in our tomographic images, while the Quaternary intermountain basins show up as small low-velocity anomalies. Most of large earthquakes, such as the 1976 Tangshan earthquake (M 7.8) and the 1679 Sanhe earthquake (M 8.0), generally occurred in high-velocity areas in the upper to middle crust. However, in the lower crust to the uppermost mantle under the source zones of the large earthquakes, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids, just like the 1995 Kobe earthquake (M 7.2) and the 2001 Indian Bhuj earthquake (M 7.8). The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the large crustal earthquakes.  相似文献   

13.
In the present decades, lots of Mesozoic and Ceno-zoic paleomagnetic data have been obtained from westernChina and adjacent areas[1—19], however, these results are still not enough to reconstruct a postcollisional kinematic model for each block of the Tibetan Plateau and Central Asia. As a result, it is very difficult to paleomagnetically depict the postcollisional interaction within blocks of Ti- bet and Central Asia in detail. On the other hand, shal- lower inclinations have been repeat…  相似文献   

14.
Tomé and Miranda’s climate trend turning discriminatory model is used to identify the spatial-temporal characteristics of the interdecadal turning of winter/summer climate modes at stations and in eight sub-areas over Chinese mainland based on the 1961–2000 observations. It is found that the stations with close occurrence years of the interdecadal trend turning (ITT) and coincident trends after the ITT exhibit a zonal distribution. A view is accordingly proposed that the interdecadal turnings of climate modes in China have remarkably regional structures. The research results show that after the early 1980s, winter climate over Chinese mainland overall trends towards a “warm-wet” mode, while summer climate had an abrupt change into “warm wet” mode in the late 1980s, suggesting that the time of the “warm-wet” mode turning for winter climate is earlier than that for summer climate. The regional characteristics and test results of the ITTs in eight sub-areas suggest that winter climate exhibits a distinctive “warm-dry” trend in North China after the late 1970s, and a slight “warm-dry” trend in Northeast China, South China, and Southwest China after the late 1980s. A “warm-wet” trend appears in the rest four sub-areas (the middle and lower reaches of the Yangtze River and the Huaihe River Valley, briefly Jianghuai, the east of the Tibetan plateau, and the east and west of Northwest China) after the early 1980s. The summer climate trends towards a “warm-dry” mode in Northeast China, North China and the east of Northwest China after the late 1980s, but a “warm-wet” mode appears in Southwest China and the east of the Tibetan plateau after the middle 1970s, as well as in Jianghuai and the west of Northwest China after the early 1980s. Specially, summer climate in South China started a “cold-wet” trend in 1984.  相似文献   

15.
In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding. There are two material flow components, i.e., the inward- or outward-directed spiral flow on the horizontal plane and the upward- or downward-directed flow on the vertical plane. In the plunge stage, the flow of plasticized metal into the cavity is similar to that of a stack, whereby the upper layer is pushed upward by the lower layer. In the refill stage, this is process reversed. As such, there is no obvious vertical plasticized metal flow between adjacent layers. Welding leads to the coarsening of S (Al2CuMg) in the thermo-mechanically affected zone and the diminishing of S in the stir zone. Continuous dynamic recrystallization results in the formation of fine equiaxed grains in the stir zone, but this process becomes difficult in the thermo-mechanically affected zone due to the lower deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, which leads to a high fraction of low-angle grain boundaries in this zone.  相似文献   

16.
The Xiaotian-Mozitan fault (XMF) located north of the Dabie orogenic belt separates the North Dabie complex to the south from the Beihuaiyang low-grade metamorphic rocks to the north. It comprises several NW-striking ductile shear zones and brittle faults. The brittle faults obviously overprinted on the ductile shear zones and promoted the development of the volcanic basins in early Cretaceous to the north, which suggests that the brittle faults were normal faults formed in early Cretaceous during doming of the Dabie orogenic belt. The ductile shear zone superposed on the north Dabie gray gneiss, and it is an important channel where the Dabie HP-UHP rocks exhumed. For obtaining new structural constraint on exhumation of the HP-UHP rocks, we present here experimental results on the microstructure, quartz C-axis fabrics and the microprobe analyses of phengite. The ductile shear zone was determined to be formed at a temperature of 600-650 ℃ and pressure of 1.1 GPa by the mineral deformation, microprobe analyses and geobarometry of Si-in-phengite of the mylonite, the results suggest that the mylonite now exposed on the surface experienced an upper amphibolite-facies metamorphism in the lower crust. The mineral stretching lineation varies from horizontal in the east segment to sub-dip in the west. Shear sense indicators from outcrop and thin sections of orientated specimen and quartz C-axis fabrics suggest that the XMF is a sinistral normal fault. The kinematics analysis of the ductile shear zone indicates that the exhumation of Dabie HP-UHP rocks is the results of a SE-directed extrusion and an anticlockwise rotation around its eastern pivot simultaneously.  相似文献   

17.
Whether the Tibetan Plateau is a significant dust source area is of great importance, because this is related to the understanding of sources, accumulation and environmental effects of dusts on the Tibetan Plateau and inthe Far East-Pacific Ocean regions as well as to the evointion of coupling of the Tibetan Plateau and atmaspbere-oeean-continent exchange. Synoptic dynamics and remote sensing tracing of a dust storm on 3 to 5 March, 2003 in Lhasa onSouth Tibet demonstrate that the Tibetan Plateau possessesall factors and conditions of generating dust storms. Accompanied with this dust storm is a strong ascending stream onthe Plateau which has raised various sizes of durst particlesinto different levels. The lifted coarse particles were largelyfallen down and accumulated as loess on the eastern TibetanPlateau, and the fine particles were translated by the westerly jet and subsided in the northern Pacific Ocean. The spa-tial-temporal distribution of dust-storms between years 1961and 2000 ou the Plateau shows that duststorms mainly occurin winter and early spring with high frequency, and tile pathof dust storm moves gradually from south to north, which isclosely coupled with the northward moving of the westerlyjet from winter to spring over the Tibetan Plateau. Com-pared with other twelve dust source areas in China. the Ti-betan Plateau is one of the key dust souree areas for thelong-distance transport because its high occurring frequencyand elevation cause fine particles easily to be lifted into thezone of the westerly jet.  相似文献   

18.
The Xiaotian-Mozitan fault (XMF) located north of Dabie orogenic belt separates the North Dabie complex to the south from the Beihuaiyang low-grade metamorphic rocks to the north. It comprises several NW-striking ductile shear zones and brittle faults. The brittle faults obviously overprinted on the ductile shear zones and promoted the development of the volcanic basins in early Cretaceous to the north, which suggests that the brittle faults were normal faults formed in early Cretaceous during doming of Dabie orogenic belt. The ductile shear zone superposed on the north Dabie grey gneiss, and it is an important channel where the Dabie HP-UHP rocks exhumed. For obtaining new structural constraint on exhumation of the HP-UHP rocks, we present here experimental results on the microstructure, quartz C-axis fabrics and the microprobe analyses of phengite. The ductile shear zone was determined to be formed at temperature of 600-650℃ and pressure of 1.1 GPa by the mineral deformation, microprobe analyses and geobarometry of Si-in-phengite of the mylonite, the results suggest that the mylonite now exposed on the surface experienced an upper amphibolite-facies metamorphism in the lower crust. The mineral stretching lineation varies from horizontal in the east segment to sub-dip in the west. Shear sense indicators from outcrop and thin sections of orientated specimen and quartz C-axis fabrics suggest that the XMF is a sinistral normal fault. The kinematics analysis of the ductile shear zone indicates that the exhumation of Dabie HP-UHP rocks is the results of a SE-directed extrusion and an anticlockwise rotation around its eastern pivot simultaneously.  相似文献   

19.
Quantitative relationship between modern pollen assemblage and altitudinal vegetation belt is crucial for the reconstruction of paleovegetation in the mountain regions.Modern pollen analysis on 70 topsoil samples was conducted across an altitudinal transect(1100-4500 m) on the eastern slope of Gongga Mountain in the eastern Tibetan Plateau with an elevation interval of 50 m.Distributions of major pollen types along the transect indicated a weak correlation between Pinus pollen and the elevation.Distributions of Picea and Abies pollen(percentage sum of 2%-8%) could fairly indicate the elevation range of 2700-3700 m,as well as the subalpine dark coniferous forest and the timberline in the region.High percentage intervals of alpine types of Ericaceae,Cupressaceae and Cyperaceae were correlated to the high-elevation regions(3700-4500 m) dominated by alpine shrub meadow and alpine meadow.Seven altitudinal vegetation belts on the eastern slope of Gongga Mountain were well defined by discriminant analysis conducted on the modern pollen assemblages,as reflected by high values of probability of modern analog.Most of the modern pollen assemblages(88.5%) were typical for the vegetation types at their sampling locations.Thus,the relationship between the modern pollen assemblages and vegetation across the altitudinal transect based on discriminant analysis can be applied to the quantitative reconstruction of paleovegetation changes in the mountain regions of the eastern Tibetan Plateau.  相似文献   

20.
Optical dating of the Jingshuiwan Paleolithic site of Three Gorges, China   总被引:2,自引:0,他引:2  
The Three Gorges region is located in the transi- tional zone between the upper and middle reaches of the Yangtze River, known as an important area for studying human origins and cultural developments in China. In the mid 1990s, a large scale Paleolithic …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号