首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New genes involved in cancer identified by retroviral tagging   总被引:21,自引:0,他引:21  
Retroviral insertional mutagenesis in BXH2 and AKXD mice induces a high incidence of myeloid leukemia and B- and T-cell lymphoma, respectively. The retroviral integration sites (RISs) in these tumors thus provide powerful genetic tags for the discovery of genes involved in cancer. Here we report the first large-scale use of retroviral tagging for cancer gene discovery in the post-genome era. Using high throughput inverse PCR, we cloned and analyzed the sequences of 884 RISs from a tumor panel composed primarily of B-cell lymphomas. We then compared these sequences, and another 415 RIS sequences previously cloned from BXH2 myeloid leukemias and from a few AKXD lymphomas, against the recently assembled mouse genome sequence. These studies identified 152 loci that are targets of retroviral integration in more than one tumor (common retroviral integration sites, CISs) and therefore likely to encode a cancer gene. Thirty-six CISs encode genes that are known or predicted to be genes involved in human cancer or their homologs, whereas others encode candidate genes that have not yet been examined for a role in human cancer. Our studies demonstrate the power of retroviral tagging for cancer gene discovery in the post-genome era and indicate a largely unrecognized complexity in mouse and presumably human cancer.  相似文献   

2.
Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains.  相似文献   

3.
We have used large-scale insertional mutagenesis to identify functional landmarks relevant to cancer in the recently completed mouse genome sequence. We infected Cdkn2a(-/-) mice with Moloney murine leukemia virus (MoMuLV) to screen for loci that can participate in tumorigenesis in collaboration with loss of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF. Insertional mutagenesis by the latent retrovirus was synergistic with loss of Cdkn2a expression, as indicated by a marked acceleration in the development of both myeloid and lymphoid tumors. We isolated 747 unique sequences flanking retroviral integration sites and mapped them against the mouse genome sequence databases from Celera and Ensembl. In addition to 17 insertions targeting gene loci known to be cancer-related, we identified a total of 37 new common insertion sites (CISs), of which 8 encode components of signaling pathways that are involved in cancer. The effectiveness of large-scale insertional mutagenesis in a sensitized genetic background is demonstrated by the preference for activation of MAP kinase signaling, collaborating with Cdkn2a loss in generating the lymphoid and myeloid tumors. Collectively, our results show that large-scale retroviral insertional mutagenesis in genetically predisposed mice is useful both as a system for identifying genes underlying cancer and as a genetic framework for the assignment of such genes to specific oncogenic pathways.  相似文献   

4.
Non-additive genetic interactions contribute to many genetic disorders, but they are extremely difficult to predict. Here we show that genetic interactions identified in yeast, unlike gene functions or protein interactions, are not highly conserved in animals. Genetic interactions are therefore unlikely to represent simple redundancy between genes or pathways, and genetic interactions from yeast do not directly predict genetic interactions in higher eukaryotes, including humans.  相似文献   

5.
The nature of synthetic genetic interactions involving essential genes (those required for viability) has not been previously examined in a broad and unbiased manner. We crossed yeast strains carrying promoter-replacement alleles for more than half of all essential yeast genes to a panel of 30 different mutants with defects in diverse cellular processes. The resulting genetic network is biased toward interactions between functionally related genes, enabling identification of a previously uncharacterized essential gene (PGA1) required for specific functions of the endoplasmic reticulum. But there are also many interactions between genes with dissimilar functions, suggesting that individual essential genes are required for buffering many cellular processes. The most notable feature of the essential synthetic genetic network is that it has an interaction density five times that of nonessential synthetic genetic networks, indicating that most yeast genetic interactions involve at least one essential gene.  相似文献   

6.
7.
8.
In model organisms, chemical mutagenesis provides a powerful alternative to natural, polygenic variation (for example, quantitative trait loci (QTLs)) for identifying functional pathways and complex disease genes. Despite recent progress in QTLs, we expect that mutagenesis is will ultimately prove more effective because the prospects of gene identification are high and every gene affecting a trait is potentially a target.  相似文献   

9.
Reversibility of acute B-cell leukaemia induced by BCR-ABL1   总被引:23,自引:0,他引:23  
Cancer is thought to arise from multiple genetic events that establish irreversible malignancy. A different mechanism might be present in certain leukaemias initiated by a chromosomal translocation. We have taken a new approach to determine if ablation of the genetic abnormality is sufficient for reversion by generating a conditional transgenic model of BCR-ABL1 (also known as BCR-ABL)-induced leukaemia. This oncogene is the result of a reciprocal translocation and is associated with different forms of leukaemia. The most common form, p210 BCR-ABL1, is found in more than 90% of patients with chronic myelogenous leukaemia (CML) and in up to 15% of adult patients with de novoacute lymphoblastic leukaemia (ALL). Efforts to establish a useful transgenic model have been hampered by embryonic lethality when the oncogene is expressed during embryogenesis, by reduced penetrance or by extremely long latency periods. One model uses the 'knock-in' approach to induce leukaemia by p190 BCR-ABL1(ref. 10). Given the limitations of models with p210, we used a different experimental approach. Lethal leukaemia developed within an acceptable time frame in all animals, and complete remission was achieved by suppression of BCR-ABL1expression, even after multiple rounds of induction and reversion. Our results demonstrate that BCR-ABL1is required for both induction and maintenance of leukaemia.  相似文献   

10.
11.
During evolution different genes evolve at unequal rates, reflecting the varying functional constraints on phenotype. An important contributor to this variation is genetic buffering, which reduces the potential detrimental effects of mutations. We studied whether gene duplication and redundant metabolic networks affect genetic buffering by comparing the evolutionary rate of 242 human and mouse orthologous genes involved in metabolic pathways. A gene with a redundant network is defined as one for which the structural layout of metabolic pathways provides an alternative metabolic route that can, in principle, compensate for the loss of a protein function encoded by the gene. We found that genes with redundant networks evolve at similar rates as did genes without redundant networks, [corrected] but no significant difference was detected between single-copy genes and gene families. This implies that redundancy in metabolic networks provides significantly more genetic buffering than do gene families. We also found that genes encoding proteins involved in glycolysis and gluconeogenesis showed as a group a distinct pattern of variation, in contrast to genes involved in other pathways. These results suggest that redundant networks provide genetic buffering and contribute to the functional diversification of metabolic pathways.  相似文献   

12.
The rat is an important system for modeling human disease. Four years ago, the rich 150-year history of rat research was transformed by the sequencing of the rat genome, ushering in an era of exceptional opportunity for identifying genes and pathways underlying disease phenotypes. Genome-wide association studies in human populations have recently provided a direct approach for finding robust genetic associations in common diseases, but identifying the precise genes and their mechanisms of action remains problematic. In the context of significant progress in rat genomic resources over the past decade, we outline achievements in rat gene discovery to date, show how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms. Finally, we present a set of principles that justify continuing and strengthening genetic studies in the rat model, and further development of genomic infrastructure for rat research.  相似文献   

13.
Most heritable traits, including disease susceptibility, are affected by interactions between multiple genes. However, we understand little about how genes interact because very few possible genetic interactions have been explored experimentally. We have used RNA interference in Caenorhabditis elegans to systematically test approximately 65,000 pairs of genes for their ability to interact genetically. We identify approximately 350 genetic interactions between genes functioning in signaling pathways that are mutated in human diseases, including components of the EGF/Ras, Notch and Wnt pathways. Most notably, we identify a class of highly connected 'hub' genes: inactivation of these genes can enhance the phenotypic consequences of mutation of many different genes. These hub genes all encode chromatin regulators, and their activity as genetic hubs seems to be conserved across animals. We propose that these genes function as general buffers of genetic variation and that these hub genes may act as modifier genes in multiple, mechanistically unrelated genetic diseases in humans.  相似文献   

14.
15.
Genetic screens carried out in lower organisms such as yeast, Drosophila melanogaster and Caenorhabditis elegans have revealed many signaling pathways. For example, components of the RAS signaling cascade were identified using a mutant eye phenotype in D. melanogaster as a readout. Screening is usually based on enhancing or suppressing a phenotype by way of a known mutation in a particular signaling pathway. Such in vivo screens have been difficult to carry out in mammals, however, owing to their relatively long generation times and the limited number of animals that can be screened. Here we describe an in vivo mammalian genetic screen used to identify components of pathways contributing to oncogenic transformation. We applied retroviral insertional mutagenesis in Myc transgenic (E mu Myc) mice lacking expression of Pim1 and Pim2 to search for genes that can substitute for Pim1 and Pim2 in lymphomagenesis. We determined the chromosomal positions of 477 retroviral insertion sites (RISs) derived from 38 tumors from E mu Myc Pim1(-/-) Pim2(-/-) mice and 27 tumors from E mu Myc control mice using the Ensembl and Celera annotated mouse genome databases. There were 52 sites occupied by proviruses in more than one tumor. These common insertion sites (CISs) are likely to contain genes contributing to tumorigenesis. Comparison of the RISs in tumors of Pim-null mice with the RISs in tumors of E mu Myc control mice indicated that 10 of the 52 CISs belong to the Pim complementation group. In addition, we found that Pim3 is selectively activated in Pim-null tumor cells, which supports the validity of our approach.  相似文献   

16.
The evolution of colorectal cancer suggests the involvement of many genes. To identify new drivers of intestinal cancer, we performed insertional mutagenesis using the Sleeping Beauty transposon system in mice carrying germline or somatic Apc mutations. By analyzing common insertion sites (CISs) isolated from 446 tumors, we identified many hundreds of candidate cancer drivers. Comparison to human data sets suggested that 234 CIS-targeted genes are also dysregulated in human colorectal cancers. In addition, we found 183 CIS-containing genes that are candidate Wnt targets and showed that 20 CISs-containing genes are newly discovered modifiers of canonical Wnt signaling. We also identified mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included those encoding members of the FGF signaling cascade. Some 70 genes had co-occurrence of CIS pairs, clustering into 38 sub-networks that may regulate tumor development.  相似文献   

17.
Mammalian genomes contain two main classes of retrotransposons, the well-characterized long and short interspersed nuclear elements, which account for approximately 30% of the genome, and the long terminal repeat (LTR) retrotransposons, which resemble the proviral integrated form of retroviruses, except for the absence of an envelope gene in some cases. Genetic studies confirmed mobility of the latter class of elements in mice, with a high proportion of phenotypic mutations consequent to transposition of the intracisternal A particle (IAP) family of LTR retrotransposons. Using the mouse genome sequence and an efficient ex vivo retrotransposition assay, we identified functional, master IAP copies that encode all the enzymatic and structural proteins necessary for their autonomous transposition in heterologous cells. By introducing mutations, we found that the three genes gag, prt and pol are all required for retrotransposition and identified the IAP gene products by electron microscopy in the form of intracellular A-type particles in the transfected cells. These prototypic elements, devoid of an envelope gene, are the first LTR retrotransposons autonomous for transposition to be identified in mammals. Their high rates of retrotransposition indicate that they are potent insertional mutagens that could serve as safe (noninfectious) genetic tools in a large panel of cells.  相似文献   

18.
Sequence variation in the human angiotensin converting enzyme.   总被引:32,自引:0,他引:32  
Angiotensin converting enzyme (encoded by the gene DCP1, also known as ACE) catalyses the conversion of angiotensin I to the physiologically active peptide angiotensin II, which controls fluid-electrolyte balance and systemic blood pressure. Because of its key function in the renin-angiotensin system, many association studies have been performed with DCP1. Nearly all studies have associated the presence (insertion, I) or absence (deletion, D) of a 287-bp Alu repeat element in intron 16 with the levels of circulating enzyme or cardiovascular pathophysiologies. Many epidemiological studies suggest that the DCP1*D allele confers increased susceptibility to cardiovascular disease; however, other reports have found no such association or even a beneficial effect. We present here the complete genomic sequence of DCP1 from 11 individuals, representing the longest contiguous scan (24 kb) for sequence variation in human DNA. We identified 78 varying sites in 22 chromosomes that resolved into 13 distinct haplotypes. Of the variant sites, 17 were in absolute linkage disequilibrium with the commonly typed Alu insertion/deletion polymorphism, producing two distinct and distantly related clades. We also identified a major subdivision in the Alu deletion clade that enables further analysis of the traits associated with this gene. The diversity uncovered in DCP1 is comparable to that described for other regions in the human genome. The highly correlated structure in DCP1 raises important issues for the determination of functional DNA variants within genes and genetic studies in humans based on marker association.  相似文献   

19.
Type 1 diabetes (T1D; or insulin-dependent diabetes mellitus, IDDM) is an autoimmune disease with both genetic and environmental components. In addition to the human leukocyte antigen (HLA) complex, the single major genetic contributor of susceptibility, an unknown number of other unidentified genes are required to mediate disease. Although many loci conferring susceptibility to T1D have been mapped, their identification has proven problematic due to the complex nature of this disease. Our strategy for finding T1D susceptibility genes has been to test for human homologues of loci implicated in diabetes-prone NOD (non-obese diabetic) mice, together with application of biologically relevant stratification methods. We report here a new susceptibility locus, IDDM18, located near the interleukin-12 (IL-12)p40 gene, IL12B. Significant bias in transmission of IL12B alleles was observed in affected sibpairs and was confirmed in an independent cohort of simplex families. A single base change in the 3' UTR showed strong linkage disequilibrium with the T1D susceptibility locus. The IL12B 3' UTR alleles showed different levels of expression in cell lines. Variation in IL-12p40 production may influence T-cell responses crucial for either mediating or protecting against this and other autoimmune diseases.  相似文献   

20.
Mental retardation and epilepsy often occur together. They are both heterogeneous conditions with acquired and genetic causes. Where causes are primarily genetic, major advances have been made in unraveling their molecular basis. The human X chromosome alone is estimated to harbor more than 100 genes that, when mutated, cause mental retardation. At least eight autosomal genes involved in idiopathic epilepsy have been identified, and many more have been implicated in conditions where epilepsy is a feature. We have identified mutations in an X chromosome-linked, Aristaless-related, homeobox gene (ARX), in nine families with mental retardation (syndromic and nonspecific), various forms of epilepsy, including infantile spasms and myoclonic seizures, and dystonia. Two recurrent mutations, present in seven families, result in expansion of polyalanine tracts of the ARX protein. These probably cause protein aggregation, similar to other polyalanine and polyglutamine disorders. In addition, we have identified a missense mutation within the ARX homeodomain and a truncation mutation. Thus, it would seem that mutation of ARX is a major contributor to X-linked mental retardation and epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号