首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The state and formation mechanism of α-Si3N4 in Fe–Si3N4 prepared by flash combustion were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate that α-Si3N4 crystals exist only in the Fe–Si3N4 dense areas. When FeS i75 particles react with N2, which generates substantial heat, a large number of Si solid particles evaporate. The product between Si gas and N2 is a mixture of α-Si3N4 and β-Si3N4. At the later stage of the flash combustion process, α-Si3N4 crystals dissolve and reprecipitate as β-Si3N4 and the β-Si3N4 crystals grow outward from the dense areas in the product pool. As the temperature decreases, the α-Si3N4 crystals cool before transforming into β-Si3N4 crystals in the dense areas of Fe–Si3N4. The phase composition of flash-combustion-synthesized Fe–Si3N4 is controllable through manipulation of the gas-phase reaction in the early stage and the α→β transformation in the later stage.  相似文献   

2.
To explore the reaction behavior of trace oxygen during the flash combustion process of falling FeSi75 powder in a nitrogen flow, a flash-combustion-synthesized Fe-Si3N4 sample was heat-treated to remove SiO2. The samples before and after the treatment were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, and the formation mechanism of SiO2 was investigated. The results show that SiO2 in the Fe-Si3N4 is mainly located on the surface or around the Si3N4 particles in dense areas, existing in both crystalline and amorphous states; when the FeSi75 particles, which are less than 0.074 mm in size, fell in up-flowing hot N2 stream, trace oxygen in the N2 stream did not significantly hinder the nitridation of FeSi75 particles as it was consumed by the surface oxidation of the generated Si3N4 particles to form SiO2. At the reaction zone, the oxidation of Si3N4 particles decreased the oxygen partial pressure in the N2 stream and greatly reduced the opportunity for FeSi75 particles to be oxidized into SiO2; by virtue of the SiO2 film developed on the surface, the Si3N4 particles adhered to each other and formed dense areas in the material.  相似文献   

3.
Si3N4/BN nanocomposite powders with the microstructure of the micro-sized α-Si3N4 particles coated with nano-sized BN particles were synthesized via the chemical reaction boric acid,urea,and α- Si3N4 powder in a hydrogen gas.The results of XRD,TEM,and selected area electron diffraction showed that amorphous BN and a little amount of turbostratic BN(t-BN) were coated on Si3N4 particles as the second phase after reaction at 1100℃.After re-heating the composite powders at 1450℃ in a nitrogen gas,the amorphous and turbostratic BN is transformed into h-BN.These nanocomposite powders can be used to prepare Si3N4/BN ceramic composites by hot-pressing at 1800℃,which have perfect machinability and can be drilled with normal metal tools.  相似文献   

4.
The development of Gen-IV nuclear systems and ultra-supercritical power plants proposes greater demands on structural materials used for key components. An Fe–18Ni–16Cr–4Al (316-base) alumina-forming austenitic steel was developed in our laboratory. Its microstructural evolution and mechanical properties during aging at 950℃ were investigated subsequently. Micro-structural changes were characterized by scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy. Needle-shaped NiAl particles begin to precipitate in austenite after ageing for 10 h, whereas round NiAl particles in ferrite are coarsened during aging. Precipitates of NiAl with different shapes in different matrices result from differences in lattice misfits. The tensile plasticity increases by 32.4% after aging because of the improvement in the percentage of coincidence site lattice grain boundaries, whereas the tensile strength remains relatively high at approximately 790 MPa.  相似文献   

5.
The wettability of V-active PdCo-based alloys on Si3N4ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6(wt%),was developed for Si3N4ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4joints brazed at 1453 K for 10 min was 205.6 MPa,and the newly developed braze gives joint strengths of 210.9 MPa,206.6 MPa and 80.2 MPa at high temperatures of 973 K,1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4joint brazed at 1453 K for10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result,the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases,in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.  相似文献   

6.
The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.  相似文献   

7.
The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114 A aluminum alloy substrates were investigated by optical microscopy(OM) and scanning electron microscopy(SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10–20 nm and 5–10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114 A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.  相似文献   

8.
Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy, were used to study the mineral structure and surface characteristics of high-iron hydrargillite. Gibbsite, goethite, and hematite were found to be the main mineral components of hydrargillite, whereas the goethite and hematite were closely clad to the surface of the multilayer gibbsite crystals. Compared with the synthetic gibbsite, the hydrargillite contained more structural micropores generated by the mineral evolution during the mineralization process. The gibbsite in hydrargillite contained less crystal water compared with the synthetic gibbsite, and it was a typical polymorphic structure. The isomorphous substitution of Al and Fe was observed in goethite. The dissolution-controlling step of hydrargillite was the ionic diffusion speed because of the goethite and hematite that closely covered and encapsulated the gibbsite crystals.  相似文献   

9.
研究非均相沉淀-热还原法制备Fe包覆α-Si3N4复合粉末常压烧结界面反应特性,并进行热力学分析.研究结果表明:在1 600℃下烧结时,α-Si3N4部分转变为β-Si3N4,Fe相消失,转而生成FeSi化合物;在1700℃下烧结时,α-Si3N4基本转变为β-Si3N4,FeSi化合物消失,Fe相重新出现;在烧结过程中,FeSi化合物或Fe晶粒发生明显长大,呈圆球状分布在Si3N4晶粒之间,实验结果可通过热力学分析进行解释.  相似文献   

10.
Thin walls of a copper-base alloy with the nominal composition CuNi17Al3Fe1.5Cr were successfully prepared by laser direct deposition additive manufacturing. The microstructure, as revealed by optical and scanning electron microscopy, indicated that the deposited material was fully dense and with a dendritic microstructure. The dendrites are parallel to the build-up direction, which is also the heat conduction direction during deposition. X-ray diffraction analysis results show that the deposited material is composed of a single phase and a copper-based solid solution. Some precipitate particles of metal silicides were observed in the interdendritic region by scanning electron microscopy. The ultimate tensile strength along the laser scanning direction reaches 735 MPa. The hardness is about Hv0.1 300.  相似文献   

11.
The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposition of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior.  相似文献   

12.
A periclase?hercynite brick was prepared via reaction sintering at 1600°C for 6 h in air using magnesia and reaction-sintered hercynite as raw materials. The microstructure development of the periclase?hercynite brick during sintering was investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. The results show that during sintering, Fe2+, Fe3+ and Al3+ ions in hercynite crystals migrate and react with periclase to form(Mg1-xFex)(Fe2-yAly)O4 spinel with a high Fe/Al ratio. Meanwhile, Mg2+ in periclase crystals migrates into hercynite crystals and occupies the oxygen tetrahedron vacancies. This Mg2+ migration leads to the formation of(Mg1-uFeu)(Fe2-vAlv)O4 spinel with a lower Fe/Al ratio and results in Al3+ remaining in hercynite crystals. Cation diffusion between periclase and hercynite crystals promotes the sintering process and results in the formation of a microporous structure.  相似文献   

13.
In situ(α-Al_2O_3+ZrB_2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis(DTA) was used to study the reaction mechanisms in the Al–Zr O2–B system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechanical properties was investigated. The results show that the optimum sintering parameters to complete reactions in the Al–Zr O2–B system are 850°C and 60 min. In situ-synthesized α-Al2O3 and Zr B2 particles are dispersed uniformly around Al particles, forming a network microstructure; the diameters of the α-Al2O3 and Zr B2 particles are approximately 1–3 μm. When the size of Al powder increases from 60–110 μm to 150–300 μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of reinforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of the in situ(α-Al2O3–Zr B2)/Al composites from Hv 163 to Hv 251.  相似文献   

14.
In this work,Fe_3Si–Si_3N_4–Al_2O_3 composites were prepared at 1300°C in an N_2 atmosphere using fused corundum and tabular alumina particles,Al_2O_3 fine powder,and ferrosilicon nitride(Fe_3Si–Si_3N_4) as raw materials and thermosetting phenolic resin as a binder.The effect of ferrosilicon nitride with different concentrations(0wt%,5wt%,10wt%,15wt%,20wt%,and 25wt%) on the properties of Fe_3Si–Si_3N_4–Al_2O_3 composites was investigated.The results show that the apparent porosity varies between 10.3% and 17.3%,the bulk density varies from 2.94 g/cm~3 and 3.30 g/cm~3,and the cold crushing strength ranges from 67 MPa to 93 MPa.Under the experimental conditions,ferrosilicon nitride,whose content decreases substantially,is unstable;part of the ferrosilicon nitride is converted into Fe_2C,whereas the remainder is retained,eventually forming the ferrosilicon alloy.Thermodynamic assessment of the Si_5AlON_7 indicated that the ferrosilicon alloy accelerated the reactions between Si_3N_4 and α-Al_2O_3 fine powder and that Si in the ferrosilicon alloy was nitrided directly,forming β-Si Al ON simultaneously.In addition,fused corundum did not react directly with Si_3N_4 because of its low reactivity.  相似文献   

15.
《矿物冶金与材料学报》2015,22(10):1092-1100
In situ (α-Al2O3+ZrB2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis (DTA) was used to study the reaction mechanisms in the Al–ZrO2–B system. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechani-cal properties was investigated.The results show that the optimum sintering parameters to complete reactions in the Al–ZrO2–B system are 850℃ and 60 min.In situ-synthesizedα-Al2O3 and ZrB2 particles are dispersed uniformly around Al particles, forming a network micro-structure; the diameters of theα-Al2O3 and ZrB2 particles are approximately 1–3μm. When the size of Al powder increases from 60–110μm to 150–300μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of re-inforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of thein situ (α-Al2O3–ZrB2)/Al composites from Hv 163 to Hv 251.  相似文献   

16.
An investigation was made on the influences of mechanical stirring on microstructure of hyper-eutectic Al-30%Si alloy (in mass fraction) during solidification. The primary Si crystals formed in the alloy melt were gradually changed from elongated platelets to near-spherical shapes by mechanical stirring. The spheroidization of primary St crystals occurs by the mechanism of bending and fracture of Si platelets, wear and collision between Si crystals, and coalescence of small Si particles. The influence of under-cooling and cooling rate of the alloy melt on primary Si crystals of semi-solid processed alloys is investigated as well. The increase of under-cooling and cooling rate decreases the size of primary Si crystals.  相似文献   

17.
Silicon (Si) particles were functionalized using carbon dots (CDs) to enhance the interaction between the Si particles and the binders. First, CDs rich in polar groups were synthesized using a simple hydrothermal method. Then, CDs were loaded on the Si surface by impregnation to obtain the functionalized Si particles (Si/CDs). The phases and microstructures of the Si/CDs were observed using Fourier-transform infrared reflection, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Si/CDs were used as the active material of the anode for electrochemical performance experiments. The electrochemical performance of the Si/CD electrode was assessed using cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge and discharge experiment. The electrodes prepared with Si/CDs showed good mechanical structure stability and electrochemical performance. After 150 cycles at 0.2 C, the capacity retention rate of the Si/CD electrode was 64.0%, which is twice as much as that of pure Si electrode under the same test conditions.  相似文献   

18.
The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25℃ and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.  相似文献   

19.
A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones.  相似文献   

20.
The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe–As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe–0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe–4wt%As and Fe–10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe–0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe–4wt%As and Fe–10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2 As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe–10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2 As phase in Fe–4wt%As and Fe–10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号