首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
热障涂层与高温合金、气膜冷却技术并称为航空发动机涡轮叶片的三大关键技术.等离子喷涂 物理气相沉积(PS PVD)工艺是最具潜力的未来航空发动机热障涂层制备方法之一,其制备的羽 柱状结构热障涂层兼具APS和EB PVD热障涂层的优点.为了进一步提高热障涂层性能,需要开发与PS PVD工艺相匹配的新型YSZ粉末.该文先采用喷雾干燥法制备出3种不同纳米团聚YSZ粉末,再使用相同PS PVD工艺制备成涂层,最后对粉末特性和涂层性能进行评价,以研究制粉工艺 粉末特性 涂层性能之间的联系.实验结果表明:悬浮液固含量越高,制备出的粉末呈现球形越规则,粒径也越大,喷涂的气化率和沉积率越高;制备的YSZ涂层由致密初始生长层和羽 柱状结构两部分构成;使用固含量45%的悬浮液制备的粉末喷涂所获得的涂层具有良好的结合强度和抗热震性能.  相似文献   

2.
热障涂层(TBCs)是提高发动机服役温度最切实可行的办法,航空发动机推重比、可靠性、热效率的任何一点进步都将依赖于热障涂层技术的发展.剥落失效是制约国际热障涂层发展与应用的重要瓶颈,这一瓶颈在我国尤为突出,但目前人们对热障涂层剥落失效的热力化耦合本质机制理解还很不透彻,缺乏合适的理论模型与分析方法来分析和控制涂层的过早剥落.针对“剥落失效”制约TBCs发展与应用的瓶颈问题提炼出热障涂层损伤机理的热力化耦合理论与实验方法的关键科学问题.基于该科学问题进行了详细的评述,包括建立TBCs破坏机制分析的热力化耦合理论模型,发展考虑实际几何形状、真实微观结构、复杂服役环境与热力化耦合理论模型的有限元模拟方法,结合TBCs热力化耦合破坏实验的研究,分析TBCs高温氧化、CMAS腐蚀、冲蚀,以及三者共同作用的热力化耦合破坏机理,提炼出影响TBCs剥落失效的关键因素.在此基础上,发展TBCs关键性能的表征方法,并建立关键因素与TBCs材料、工艺之间的关联,指导TBCs的优化设计与安全应用.最后提出了未来的重点研究方向.  相似文献   

3.
热障涂层研究进展   总被引:1,自引:0,他引:1  
介绍近年来国内外热障涂层的研究状况和发展趋势.通过对热障涂层的材料和结构体系的综述,分析了制备热障涂层的各种技术方法,论述了热障涂层的失效与破坏机理,并且对热障涂层的技术发展与应用前景作了展望.  相似文献   

4.
钙镁铝硅酸盐(CMAS)对TBCs材料的耐久性能有很大的影响,因此CMAS的腐蚀越来越受到人们的关注.该文研究了空气等离子喷涂(APS) 7%Y_2O_3稳定ZrO_2(7YSZ)热障涂层(TBCs)在CMAS腐蚀下的微观结构变化,并且定量分析了在CMAS腐蚀情况下Y元素损失对涂层性能的影响.CMAS腐蚀涂层的显微形貌表明,CMAS在YSZ中的渗透深度随温度的升高而增大,孔隙率随温度的升高而减小.拉曼光谱仪的实验结果表明,CMAS腐蚀后的YSZ可以发生四方(t)相到单斜(m)相转变,X射线衍射测量也证实了这一点.电子探针微观分析结果表明,腐蚀后YSZ中的Y含量降低并转移到CMAS中.此外,研究还表明了CMAS中Y含量在不同加热温度和加热次数下的平均浓度变化.  相似文献   

5.
燃气涡轮发动机是高性能航空发动机和重型燃气轮机的主要形式与发展趋势,是体现国家核心竞争力与科技水平的重要标志.热障涂层是提高航空发动机和重型燃气轮机服役温度最切实可行的办法,但热障涂层的应用与发展面临系列挑战,在我国尤为突出,如涂层过早剥落,性能不稳定,承温能力不足等.该文对先进热障涂层的强韧和破坏机制的标准规范研究进行了详细的评述.具体包括:锆钽系涂层有望成为下一代高性能热障涂层,基于铁弹增韧的应变梯度调控的涂层成分与结构设计,基于界面粗糙度与晶粒纳米化的尺度效应的强界面设计,先进热障涂层微结构与强韧及破坏的关联,热障涂层制备装备与跨尺度力学行为的表征技术,跨尺度力学性能与破坏表征的标准规范.最后提出了未来的重点研究方向.  相似文献   

6.
在制备热障涂层过程中系统内残余应力场预测   总被引:2,自引:1,他引:2  
在热障涂层系统制备工艺冷却过程中,各层材料参数不匹配(如弹性模量、泊松比、热膨胀系数、热传导参数等)将导致其体内各层材料冷却速率不一样,同时在各层界面上热障涂层系统为了保持应变协凋和位移连续,最终在冷却后热障涂层系统各层内均存在热残余应力.通过建立相应的理沦模型得到了热障涂层系统各层热残余应力的解析解表达式.通过计算分析,得到了冷却方式和陶瓷喷涂厚度对各层残余应力的影响.最终希望得到一组最优化工艺参数来指导热障涂层制备工艺和生产.  相似文献   

7.
燃气轮机高温部件的气膜冷却是保障发动机安全运行的重要途径.在等离子喷涂过程中,涂层沉积会堵塞气膜孔,降低冷却效果.气膜孔的边缘是涂层应力最集中的地方,也是涂层脱落的发源地.金属黏结层材料NiCrAlY熔点低、延展性好,首先在孔边缘沉积,向孔中心收缩,形成喉部,是堵孔的主要来源;陶瓷涂层材料YSZ熔点高、延展性差,对堵孔的贡献相对较小.为了降低涂层沉积对气膜孔的堵塞作用,该文研究了3种方法:(1) 向气膜孔内部注入防粘胶,涂层制备结束后再将防粘胶清理出来;(2) 在制备涂层的过程中,从基体背部向气膜孔内通入压缩空气,阻止涂层在气膜孔边缘沉积;(3) 制备涂层后,用机械通孔的方法清理气膜孔边缘的涂层.这3种方法都能有效地降低涂层对气膜孔的堵孔率,但对涂层热循环寿命的影响有明显差异.气膜孔内通入适当流量的冷却气,有效降低了涂层在气膜孔边缘的沉积,提高了涂层的热循环寿命.机械通孔的方法使气膜孔边缘的涂层产生裂纹,涂层的热循环寿命明显降低.  相似文献   

8.
目前二维IV-VI族窄带隙半导体材料在存储开关、太阳能转换、热电转换和近红外光电器件等领域受到了广泛关注.其中硒化锡(SnSe)和二硒化锡(SnSe2)作为典型的IV-VI族窄带隙半导体,由于其优异的电子和光电性能成了研究热点.目前,制备SnSe和SnSe_2薄膜通常需要使用两套气相沉积系统,而制备SnSe_2纳米片更是需要通过化学气相沉积的方法才能获得,因此面临制备成本高、可控性低的问题.该文提供了一种气相沉积方法,一步制备了SnSe和SnSe_2薄膜,大大提高了制备效率.该方法只需要控制加热温度,制备过程简单可控.通过一系列的表征手段证明,制备的SnSe薄膜和SnSe_2薄膜十分纯净.  相似文献   

9.
用“两步法”的简单路线制备银纳米粒子包覆的聚苯乙烯(PS)球的复合纳米粒子,并可以随意调控银壳的密度及对其光学性质进行了系统的研究.第一步是包含金属离子(AgNO3)、还原物质(聚乙烯亚胺)作为核的聚苯乙烯(PS)球胶体三者混合物的胶体;第二步是通过加热使前驱体溶液转换成金属银包覆的聚苯乙烯(PS)球的复合纳米粒子.通过改变实验参数,可以控制金属银壳的覆盖率,且复合纳米粒子的光学性质可以进行调控.此方法实验步骤简单、重复性好.  相似文献   

10.
热障涂层作为一种耐高温、耐腐蚀的热防护陶瓷材料,被广泛应用于航空发动机的高温部件,改善了发动机的耐高温性能且延长了其服役寿命.在高温服役环境中,由于界面氧化导致的TGO生长是诱发涂层剥落失效的主要原因.剥落失效是制约热障涂层在高性能航空发动机上安全应用的重要瓶颈,因此准确预测高温下热障涂层TGO的生长规律及微观形貌的演变规律对理解热障涂层界面氧化剥落失效至关重要.基于此,该文开展了不同制备工艺热障涂层材料的高温氧化实验,来分析TGO的生长规律以及微观形貌演变规律.实验结果表明:NiCrAlYSi黏结层氧化速率最快,抗氧化性能最差,TGO的生长不规则,氧化后期容易剥落.NiCrAl合金样品在高温下的氧化速率较慢,TGO的生长缓慢,抗氧化性能较好.Pt扩散黏结层的氧化速率介于两者之间,TGO的生长速率缓慢.在分析合金材料氧化的过程中,发现样品表面的粗糙度对TGO的生长有较大的影响,表面粗糙度越小TGO的生长速率越快,与基底的结合性越好.  相似文献   

11.
热障涂层热循环过程中的界面扩散系数   总被引:2,自引:0,他引:2  
采用磁控溅射力方法在镍基单晶高温合金基体上沉积Ni-30Cr-12Al-0.3Y(质量分数,%)粘结层,采用电束物理气相沉积方法(EB-PVD)沉积7%Y2O3(质量分数,%ZrO2)陶瓷层.对粘结层与陶瓷层界面在1050℃循环100次时的元素扩散,提出了电子探针与最小二乘法相结合的研究方法.求出元素在界面的扩散系数.继续热循环,粘结层中Al贫化.Ni和Cr参与氧化,加速氧化反应,增加氧化膜内应力,使氧化膜破裂、陶瓷层剥落,最终导致热障涂层失效。  相似文献   

12.
为提高航空发动机性能,热障涂层被广泛地用于涡轮叶片上.涂层在高温下服役时,会发生烧结,使涂层变得更加致密,从而不可避免地增加了热障涂层的弹性模量和热导系数,强烈地影响了涂层的耐用性、效率和性能.该文针对等离子喷涂制备的热障涂层,建立了涂层的二维真实微结构有限元模型,并运用相场模型研究了在1 400℃烧结条件下涂层微结构随时间演化的动态规律.计算结果表明:在烧结初期,涂层中微裂纹在最窄处迅速愈合,并开始形成不连续的单个小孔隙.烧结中期,前期由微裂纹产生的孔隙不断愈合,或者与相邻孔隙合并.烧结后期,涂层前期微裂纹大都形成了球形,孔隙间相对距离大,较小孔隙主要是以愈合的方式消失,涂层孔隙率随烧结时间的增加先迅速下降后趋于平稳.模拟的结果与实验结果相吻合.  相似文献   

13.
孤立厚涂层通常被用来测试涂层的热物理性能,如热膨胀系数、热扩散系数、比热容等.不同形状的孤立厚陶瓷涂层通常通过在不同形状的石墨模具上采用等离子体喷涂增材制造的方法制备.采用有限元“生死单元”模拟技术对3D打印增材制造过程中的纳米结构YSZ热障涂层的残余应力进行了有限元模拟.考虑了方形、圆柱形、六棱柱及星柱形四种结构的石墨模具,系统计算并比较了四种石墨模具制备的厚涂层的应力分布特征.研究结果表明:在厚涂层的侧面存在较大的压应力集中,最大压应力往往分布在柱的边角或边缘处.对于热喷涂3D打印圆柱状厚涂层,压应力连续分布在厚涂层侧面的环形面上.对于四种类型的厚涂层,热喷涂3D打印圆柱状厚涂层在x,y,z三个方向上最大压应力值最小,分别为-19.574 MPa,-19.565 MPa和 -56.569 MPa.且x,y,z三个方向上应力梯度变化最小(分别为0.169 MPa/mm,0.173 MPa/mm,0.0218×10-3 MPa/mm),而星柱型厚涂层x,y,z三个方向上应力变化梯度最大(分别为2.344 MPa/mm,14.092 MPa/mm,2.171 MPa/mm).涂层的应力随着涂层厚度的增大而增大,且纳米结构涂层的应力低于传统结构涂层的应力.通过应力状态及应力大小的调控,将会促进YSZ涂层的铁弹性相变,进一步提高涂层的断裂韧性,从而有望进一步提高涂层的抗热震性能.  相似文献   

14.
该文采用微弧脉冲离子表面改性技术与高能等离子喷涂工艺制备了具有阻燃特性的TiZrNiCuBe非晶结构改性层和具有隔热特性的YSZ隔热一体化复合功能涂层.研究了该复合功能涂层的阻燃特性、隔热能力、结合强度等关键性能,重点研究了该复合功能涂层对钛合金基体的室温和高温拉伸性能、高温拉伸持久性能、高温拉伸蠕变性能及高周疲劳性能等力学性能的影响.结果表明:采用微弧脉冲离子表面改性技术与高能等离子喷涂工艺制备的TiZrNiCuBe阻燃和YSZ隔热复合功能涂层,与钛合金基体的结合强度较高,达到37.6 MPa;在750 ℃仍然具有显著的阻燃效果,而未涂敷阻燃隔热复合功能涂层的钛合金在350 ℃就发生“钛火”燃烧现象;600 ℃时的隔热温度达到70 ℃,能满足无人机尾喷管使用要求.TA32钛合金沉积阻燃改性层后,与TA32钛合金相比,室温抗拉强度下降2.7%,550 ℃高温抗拉强度提高0.9%,550 ℃/350 MPa高温拉伸持久寿命下降8.5%,550 ℃/300 MPa高温拉伸蠕变伸长量提高2.5%,高周疲劳寿命下降25%;TA32钛合金沉积阻燃改性层再喷涂隔热涂层制备的阻燃隔热复合功能涂层后,与TA32钛合金相比,室温抗拉强度下降12.9%,550 ℃高温抗拉强度下降12.7%,550 ℃/350 MPa高温拉伸持久寿命下降39.7%,550 ℃/300 MPa高温拉伸蠕变伸长量提高32%,高周疲劳寿命下降24%.因此,采用微弧脉冲离子表面改性技术与高能等离子喷涂工艺制备的TiZrNiCuB阻燃和YSZ隔热复合功能涂层,对于TA32钛合金基体的室温和550 ℃的抗拉强度影响不大,但对高温拉伸持久、高温拉伸蠕变和高周疲劳性有较大的不利影响,特别是降低了钛合金基体的疲劳性能.  相似文献   

15.
采用悬浮液等离子体喷涂(SPS)工艺在以GH3128高温合金为基底,CoNiCrAlY为黏结层的表面上制备氧化钇部分稳定的氧化锆(YSZ)厚热障涂层(TTBCs),研究单片层的形貌特征及单片层之间的堆叠行为对涂层微结构的影响.对无支撑的YSZ涂层进行了1 200~1 600 ℃保温24 h和1 550 ℃保温20~100 h的高温时效处理,分析涂层的物相组成和晶粒尺寸等的变化;对涂层试样进行了高温燃气焰流循环热考核,并对其失效机理进行了探讨.结果表明,SPS单片层由四方相晶粒组成.涂层经1 550 ℃高温热处理40 h发生四方相(t)向单斜相(m)转变,且m相的含量随热处理时间的延长而增加,但对于24 h高温处理样品,即便将热处理温度提升到1 600 ℃,也未见t→m相变.SPS涂层经热考核前后应力演变是其失效根源,通过相邻柱状晶的脱落可有效地释放陶瓷层中的应力集中,最终与界面附近陶瓷层微裂纹相互连接而导致涂层剥落.  相似文献   

16.
热障涂层是决定未来航空发动机与燃气轮机发展水平的核心技术.涂层剥落失效是热障涂层,尤其是我国热障涂层应用与发展所急需解决的关键问题.服役环境试验模拟装置是解决热障涂层剥落失效问题的必然措施.该文从静态试验模拟装置、动态试验模拟装置两个方面对试验模拟装置的国内外研究现状和发展趋势进行了详细的评述.最后,对航空发动机涡轮叶片热障涂层模拟试验装置的关键科学和技术问题进行了展望.  相似文献   

17.
AlN薄膜具有优良的绝缘性能和力学性能,被广泛应用于微电子领域的绝缘耐压涂层采用离子注入结合磁过滤等离子体沉积技术,氮气流量为30~90 sccm,在304不锈钢和环氧玻璃纤维板上制备硬质AlN纳米涂层采用XPS、AFM、XRD和SEM分析AlN纳米涂层的成分、表面形貌及结构采用纳米硬度计、介电谱仪以及兆欧级电阻表研究涂层的力学和电学性能结果表明,制备的AlN纳米薄膜结构致密、表面光滑随氮气流量的增加,薄膜由强 (100) 择优取向转变为 (100)、(002) 和 (102) 任意取向生长AlN纳米薄膜的纳米硬度、H/E*、H3/E*2先增加后减小,而电导率逐渐下降,阻抗逐渐增加氮气流量为60 sccm时,AlN纳米涂层具有优良的力学性能和电学性能  相似文献   

18.
采用化学气相沉积法(CVD)在导电玻璃衬底上制备了Mg掺杂的ZnO微纳米棒、微纳米球,实验过程不需要催化剂.X射线衍射仪(XRD)分析结果表明制备的Mg掺杂ZnO微纳米棒仍具有六方铅锌矿结构.利用扫描电子显微镜(SEM)观测,750 ℃恒温、载入氩气流速为100 mL/min的样品,有微纳米棒、微纳米球的生成.能谱图(EDS)和光致发光谱测试表明微纳米棒中有Mg的掺入.  相似文献   

19.
采用有限元软件ABAQUS建立了非齐边三层平板结构热障涂层模型,并模拟了在制备过程中其残余应力的分布情况,主要讨论了沉积温度、陶瓷层厚度对其残余应力场分布的影响.计算表明:沉积温度越高,陶瓷层厚度越厚,容易造成陶瓷层端部应力分布不均匀区域变大,同时对基底应力场不均匀分布影响区域也越深;在不同的陶瓷层厚度和沉积温度条件下,陶瓷层和过渡层均处于压应力状态,其数值分别在-50 ~ -300 MPa和-30~-140 MPa范围内,而基底则处于拉应力状态,其值变化在5 ~ 55 MPa范围内;陶瓷层与过度层界面剪切残余应力呈双曲正弦分布,且在界面中间剪切残余应力的值接近于零.这些模拟结果将进一步完善解析解所预测的残余应力场分布情况,为后期采用拉伸法研究热障涂层系统界面结合性能时提供重要的应力分析基础.  相似文献   

20.
强脉冲电子束引发气相沉积过程的研究   总被引:1,自引:0,他引:1  
近年来,随着等离子体技术的迅速发展,等离子体化学气相沉积在微电子、超导、光纤通讯等新技术领域里被广泛用于材料表面改性,制备各种具有特殊性能的薄膜等.作者在这方面作了一些有意义的工作.本文将介绍一种类似于激光产生化学气相沉积的新手段,即在低压气体环境中,利用强脉冲电子束轰击靶物质,在衬底表面生成固体薄膜的实验结果,以及用AES,ESCA.电子显微镜等分析手段观察,探讨样品表面的化学组成和结构变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号