首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
The hot deformation behavior and microstructures of Al-7055 commercial alloy were investigated by axisymmetric hot compression at temperatures ranging from 300℃ to 450℃ and strain rates from 10-2 to 10 s-1, respectively. Microstructures of deformed 7055 alloy were investigated by transmission electron microscopy (TEM). The dependence of peak stress on deformation temperature and strain rate can be expressed by the hyperbolic-sine type equation. The hot deformation activation energy of the alloy is 146 kJ/mol. Moreover, the flow stress curves predicted by the modified constitutive equations are reasonably consistent with the experimental results, which confirms that the proposed deformation constitutive equations can provide evidence for the selection of hot forming parameters. TEM results indicate that dynamic recovery is the main softening mechanism during hot deformation.  相似文献   

2.
The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800–1200℃ and 0.005–5 s-1 using a Gleeble 3500 thermal-mechanical simulator, and its deformation behavior was analyzed. The results show that the flow stress of Super304H steel decreases with the decrease of strain rate and the increase of deformation temperature; the hot deformation activation energy of the steel is 485 kJ/mol. The hot deformation equation and the relationship between the peak stress and the deformation temperature and strain rate is obtained. The softening caused by deformation heating cannot be neglected when both the deformation temperature and strain rate are higher.  相似文献   

3.
The hot deformation behaviors of GH4706 alloy were investigated using compression tests in a deformation temperature range from 900℃ to 1200℃ with a strain rate range of 0.001–1 s?1. Hot processing maps were developed on the basis of the dynamic material model and compression data. A three-dimensional distribution of power dissipation parameter (η) with strain rate and temperature reveals that η decreases in sensitivity with an increase in strain rate and a decrease in temperature. Microstructure studies show that the grain size of GH4706 alloy increases when η is larger than 0.32, and the microstructure exhibits local deformation when η is smaller than 0.23. The hot processing map at the strain of 0.7 exposes a domain peak at η=0.32 for the temperature between 940℃ and 970℃ with the strain rate from 0.015 s?1 to 0.003 s?1, and these are the optimum parameters for hot working.  相似文献   

4.
The effect of processing parameters on the flow response and microstructural evolution of the α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si has been studied by conducting isothermal hot compressive tests at a strain rate of 0.01–10 s-1 at 860–1100℃. The true stress-true strain curves of the sample hot-compressed in the α+β phase region exhibit a peak stress followed by continuous flow softening, whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s-1, the alloy exhibits plastic flow instabilities. According to the kinetic rate equation, the apparent activation energies are estimated to be about 674–705 kJ/mol in the α+β region and 308–335 kJ/mol in the β region, respectively. When deformed in the α+β region, the globularization process of the α colony structure occurs, and α dynamic recrystallized microstructures are observed to show bimodal. Dynamic recrystallization can take place in the β region irrespective of starting deformed structures.  相似文献   

5.
Hot deformation behaviors of WE71 (Mg–7Y-1Nd-0.5Zr) alloy was investigated by plain strain compression tests conducted at temperatures ranging from 350 °C to 500 °C and strain rates varying from 0.01 s-1 to 10 s-1. Results show that the hot deformation of WE71 was accompanied by the precipitation of rich Zr phase with granular shape and block-shaped phase rich in element Y. When deformed at low temperature and high strain rate, the softening behavior of the alloy was synergically determined by shear bands propagation, adiabatic heating, twinning formation and dynamic recrystallization (DRX). For the conditions of high temperature and high strain rate, DRX was the major softening mechanism while the formation and annihilation of extension twinning resulted in a special flow curve characteristic at the strain of around 0.3. According to the microstructural observations, it can be concluded that the irregular flow curves of WE71 alloy during plain strain compression process are mainly ascribed to shear bands propagation, adiabatic heating, twinning formation and DRX.  相似文献   

6.
The hot deformation behavior of the as-cast Ti–48Al–2Cr–2Nb alloy was investigated by isothermal compression tests at deformation temperatures ranging from 1000℃ to 1200℃,and strain rates from 0.001 s~(-1)to 0.1 s~(-1).The single peak stress features common to all flow curves indicate that DRX is the dominating softening mechanism.The calculated values of the hot deformation activation energy Q and stress index n are 296.5 kJ mol~(-1)and 3.97,respectively.Based on this,the Arrhenius type constitutive equation was successfully established.The DRX critical condition model and relationship among DRX volume fractions,deformation temperatures and strain rates were obtained to optimize the process.Combined with microstructure analysis,it's concluded that 1200℃/0.01s~(-1)is the optimization parameter.Besides,both DDRX and CDRX were observed in theγphase evolution.The deformation mechanism from the inter-grain dislocation motion to the grain boundary migration and grain rotation was discussed.  相似文献   

7.
The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950–1100℃ and the strain rates of 0.01–1 s?1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation (Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950℃ and the strain rate of 0.01 s?1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950℃, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.  相似文献   

8.
通过Gleeble-3500热模拟试验机对铜/石墨复合材料进行热压缩试验,研究变形温度为700~850 ℃、应变速率为0.001~1.000 s-1时该复合材料的热变行为。通过光学显微镜研究复合材料显微组织的演变,根据实验数据构建该复合材料的本构方程和热加工图。使用Zener-Hollomon参数模型对该复合材料的流变应力进行研究。研究发现,铜/石墨复合材料的流变应力随着应变温度的升高而降低,随应变速度的增大而增大。计算得出该复合材料的热变形激活能为463.02 kJ/mol,表明材料具有良好的成形能力。通过构建的本构方程验证了最大应力的吻合性,发现计算值和试验值的误差在9.5%以内,说明该方程对复合材料的流变行为具有指导作用。热加工图表明了该复合材料的适宜加工温度为780~820 ℃,变形速率为0.050~0.100 s-1;变形温度为830~850 ℃时,变形速率约为0.001 s-1。  相似文献   

9.
The hot deformation behavior of Ti-42.9Al-4.6Nb–2Cr (at. %) was investigated by isothermal compression tests at the deformation temperature range of 1373–1573 K, strain rate range of 0.001–1.0 s−1, up to the strain of 0.69. The flow stress test results of Ti-42.9Al-4.6Nb–2Cr showed negative temperature and positive strain rate sensitivity. Besides, strain had a great effect on the hot deformation behavior of Ti-42.9Al-4.6Nb–2Cr. Kinetic analysis was adopted to assess the hot workability of Ti-42.9Al-4.6Nb–2Cr via apparent activation energy (Q) of hot deformation, strain-rate sensitivity index (m) and strain hardening index (n). The Q value varied from 607.1 ± 0.7 kJ·mol−1 to 512.6 ± 10.8 kJ mol−1 with the increasing of strain from 0.1 to 0.6. The effect of strain on the Q value at the deformation temperatures below 1473 K was mainly related to dynamic recrystallization of γ phase and kinking of γ lamellae, while the Q value at the deformation temperature above 1473 K might be linked to γ→α phase transformation and DRV of α phase. Based on the kinetic analysis, strain-compensated Arrhenius model and Hensel-Spittel model were successfully established to predict the hot workability (flow stress). Average absolute relative errors of established strain-compensated Arrhenius model and Hensel-Spittel model were 7.52% and 11.95%, respectively. Moreover, both established constitutive models can be extrapolated for predicting the flow stress of Ti-42.9Al-4.6Nb–2Cr to larger strain levels.  相似文献   

10.
The hot deformation behavior of GH909 superalloy was studied systematically using isothermal hot compression tests in a temperature range of 960 to 1040℃ and at strain rates from 0.02 to 10 s-1 with a height reduction as large as 70%. The relations considering flow stress, temperature, and strain rate were evaluated via power-law, hyperbolic sine, and exponential constitutive equations under different strain conditions. An exponential equation was found to be the most appropriate for process modeling. The processing maps for the superalloy were constructed for strains of 0.2, 0.4, 0.6, and 0.8 on the basis of the dynamic material model, and a total processing map that includes all the investigated strains was proposed. Metallurgical instabilities in the instability domain mainly located at higher strain rates manifested as adiabatic shear bands and cracking. The stability domain occurred at 960-1040℃ and at strain rates less than 0.2 s-1; these conditions are recommended for optimum hot working of GH909 superalloy.  相似文献   

11.
Genesis of continental seismogenic zone and a new fault zone model   总被引:2,自引:0,他引:2  
Experiments were conducted repeatedly on Mannari granite under different temperature and confining pressure conditions. Systematic micro- and submicro-structural and mechanical analyses of granite samples deformed under 1.5 GPa (confining pressure), at 25℃—650℃temperatures and at 2× 10-6 s-1 strain rate show the brittle-ductile deformation microstructures and microstructural associations similar to those observed in naturally deformed crustal rocks and minerals. Brittle fracturing and crystalline plasticity co-exist and react with each other in the brittle-ductile transition domain of the continental lithosphere. The interaction between the different mechanisms in the transitional domain results in the variation of anomalous strength values, which may best explain the genesis of the continental seismogenic zone. A new fault zone model is proposed on the basis of detailed micromechanical and microstructural analyses.  相似文献   

12.
Isothermal hot compression tests of as-cast high-Cr ultra-super-critical (USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s-1. The softening mechanism was dynamic recovery (DRV) at 950°C and the strain rate of 1 s-1, whereas it was dynamic recrystallization (DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ·mol-1. The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate (θ)–flow stress (σ) and -?θ/?σ–σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s-1, with a power dissipation efficiency η greater than 31%.  相似文献   

13.
The dynamic recrystallization (DRX) and phase transformation (PT) behavior of a wrought β-γ TiAl alloy during hot compression under various deformation temperatures were investigated. The typical work hardening and flow softening features indicated that DRX was the dominating softening mechanism. Both γ-DRX and β-DRX took place during the hot compression. γ-DRX was triggered at all compression temperatures, while the β-DRX was induced when the compression temperature was above 1000 °C. The hot deformation kinetics was calculated, which showed that DRX behavior existed in the whole hot compression process, and the DRX volume fraction increased with the increase of the compression temperature. Combined with the microstructure observation, it concluded that the β/B2+α2→γ PT occurred at 850 °C and 1000 °C, while the γ→β/B2 PT happened at 1050 °C during hot compression, which is important to optimize microstructure. Moreover, the hot compression mechanism changed from dislocation gliding to grain-boundary sliding was discussed.  相似文献   

14.
高锰TRIP钢热变形行为研究   总被引:1,自引:0,他引:1  
通过单轴压缩实验,研究了高锰TRIP钢(Fe15Mn3Si3Al)在800~1050℃温度范围内、应变速率ε.=0.01~5.0s-1条件下的热变形行为和组织变化,讨论了热变形参数对流变应力和显微组织的影响.结果表明:动态再结晶只在较高变形温度和低应变速率下发生.实验钢对温度和应变速率都很敏感,而应变速率对实验钢的热变形行为影响较大.高锰TRIP钢的表观应力指数n=3.909,变形激活能Q=353.167kJ/mol.根据实验数据,建立了高锰TRIP钢高温变形的热加工方程.  相似文献   

15.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

16.
Single- and two-step hot compression experiments were carried out on 16Cr25Ni6Mo superaustenitic stainless steel in the temperature range from 950 to 1150℃ and at a strain rate of 0.1 s-1. In the two-step tests, the first pass was interrupted at a strain of 0.2; after an interpass time of 5, 20, 40, 60, or 80 s, the test was resumed. The progress of dynamic recrystallization at the interruption strain was less than 10%. The static softening in the interpass period increased with increasing deformation temperature and increasing interpass time. The static recrystallization was found to be responsible for fast static softening in the temperature range from 950 to 1050℃. However, the gentle static softening at 1100 and 1150℃ was attributed to the combination of static and metadynamic recrystallizations. The correlation between calculated fractional softening and microstructural observations showed that approximately 30% of interpass softening could be attributed to the static recovery. The microstructural observations illustrated the formation of fine recrystallized grains at the grain boundaries at longer interpass time. The Avrami kinetics equation was used to establish a relationship between the fractional softening and the interpass period. The activation energy for static softening was determined as 276 kJ/mol.  相似文献   

17.
为了解决Cr20 Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 kJ·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

18.
The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130℃ and the strain-rate range from 0.005 to 0.5 s?1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s?1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100℃ or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130℃. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener–Hollomon parameters are induced by local plastic flow and primary γ′ local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090–1130℃ with 0.08–0.5 s?1 and 0.005–0.008 s?1 and 1040–1085℃ with 0.005–0.06 s?1.  相似文献   

19.
考虑退火温度和应变率对6063铝合金力学性能的影响,采用材料试验机和声发射测试系统对铝合金PLC效应和声发射特性开展实验研究,获得了不同应变率下材料的应力-应变曲线和不同退火温度下声发射参数的变化规律.结果表明,2×10-3,2×10-4,2×10-5s-1应变率加载时,6063铝合金的应力应变曲线表现出明显的PLC现象,降低加载应变率,PLC现象增强,并出现了从A型到C型的转化;加载应变率为2×10-4s-1时,PLC效应的临界应变随退火温度的升高而降低;由于细观结构上可动位错密度的增加,屈服阶段试件中产生的声发射振铃计数急剧增加,达到峰值;进入到塑性强化阶段,声发射活动减弱;弹性变形阶段和塑性强化阶段产生突发型信号,而屈服阶段为连续型信号,与试件的均匀变形以及剪切变形带的形成与传播相关.   相似文献   

20.
Rising atmospheric CO2 and temperature are altering ecosystem carbon cycling. Grasslands play an important role in regional climate change and global carbon cycle. Below-ground processes play a key role in the grassland carbon cycle because they regulate …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号