首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
S Augustin  M W Müller  R J Schweyen 《Nature》1990,343(6256):383-386
Group II introns, which are classed together on the basis of a conserved secondary structure, are found in organellar genes of lower eukaryotes and plants. Like introns in nuclear pre-messenger RNA, they are excised by a two-step splicing reaction to generate branched circular RNAs, the so-called lariats. A remarkable feature of group II introns is their self-splicing activity in vitro. In the absence of a nucleotide cofactor, the intron RNAs catalyse two successive transesterification reactions which lead to autocatalytic excision of the lariat IVS from pre-mRNA and concomitantly to exon ligation. By virtue of its ability to specifically bind the 5' exon, the intron can also catalyse such reactions on exogenous RNA substrates. This sequence-specific attachment could enable group II introns to integrate into unrelated RNAs by reverse splicing, in a process similar to that described for the self-splicing Tetrahymena group I intron. Here we report that group II lariat IVS can indeed reintegrate itself into an RNA composed of the ligated exons in vitro. This occurs by a process of self-splicing that completely reverses both transesterification steps of the forward reaction: it involves a transition of the 2'-5' phosphodiester bond of the lariat RNA into the 3'-5' bond of the reconstituted 5' splice junction.  相似文献   

2.
Human U2 snRNA can function in pre-mRNA splicing in yeast   总被引:12,自引:0,他引:12  
E O Shuster  C Guthrie 《Nature》1990,345(6272):270-273
The removal of introns from messenger RNA precursors requires five small nuclear RNAs (snRNAs), contained within ribonucleoprotein particles (snRNPs), which complex with the pre-mRNA and other associated factors to form the spliceosome. In both yeast and mammals, the U2 snRNA base pairs with sequences surrounding the site of lariat formation. Binding of U2 snRNP to the highly degenerate branchpoint sequence in mammalian introns is absolutely dependent on an auxiliary protein, U2AF, which recognizes a polypyrimidine stretch adjacent to the 3' splice site. The absence of this sequence motif in yeast introns has strengthened arguments that the two systems are fundamentally different. Deletion analyses of the yeast U2 gene have confirmed that the highly conserved 5' domain is essential, although the adjacent approximately 950 nucleotides can be deleted without any phenotypic consequence. A 3'-terminal domain of approximately 100 nucleotides is also required for wild-type growth rates; the highly conserved terminal loop within this domain (loop IV) may provide specific binding contacts for two U2-specific snRNP proteins. We have replaced the single copy yeast U2 (yU2) gene with human U2 (hU2), expecting that weak or no complementation would provide an assay for cloning additional splicing factors, such as U2AF. We report here that hU2 can complement the yeast deletion with surprising efficiency. The interactions governing spliceosome assembly and intron recognition are thus more conserved than previously suspected. Paradoxically, the conserved loop IV sequence is dispensable in yeast.  相似文献   

3.
Retrotransposition of a bacterial group II intron   总被引:13,自引:0,他引:13  
Cousineau B  Lawrence S  Smith D  Belfort M 《Nature》2000,404(6781):1018-1021
  相似文献   

4.
A 3' splice site-binding sequence in the catalytic core of a group I intron   总被引:9,自引:0,他引:9  
Ribozymes use specific RNA-RNA interactions for substrate binding and active-site formation. Self-splicing group I introns have approximately 70 nucleotides constituting the core, a region containing sequences and structures indispensable for catalytic function. The catalytic core must interact with the substrates used for the two steps of the self-splicing reaction, that is, guanosine, the 5'-splice-site helix (P1) and the 3' splice site. Mutational evidence suggests that core sequences near segment J6/7 that joins the base-paired stems P6 and P7, and the bulged base of P7(5'), participate in binding guanosine substrate, but nothing is known about the interactions between the core, the 5'-splice-site helix and the 3' splice site. On the basis of comparative sequence data, it has been suggested that two specific bases in the catalytic core of group I introns might form a binding sequence for the 3' splice site. Here we present genetic evidence that such a binding site exists in the core of the Tetrahymena large subunit ribosomal RNA intron. We demonstrate that this pairing, termed P9.0, is functionally important in the exon ligation step of self-splicing, but is not itself responsible for 3'-splice-site selection.  相似文献   

5.
Spontaneous shuffling of domains between introns of phage T4   总被引:2,自引:0,他引:2  
M Bryk  M Belfort 《Nature》1990,346(6282):394-396
The three self-splicing introns in phage T4 (in the td, sunY and nrdB genes) (Fig. 1a) each have the conserved group I catalytic RNA core structure (Fig. 1b), out of which is looped an open reading frame. Although the core sequences are very similar (approximately 60% identity), the open reading frames seem to be unrelated. Single crossover recombination events between homologous core sequences in the closely linked td and nrdB introns have led to 'exon shuffling. Here we describe spontaneous double crossovers between the unlinked td and sun Y introns that result in shuffling of an intron structure element, P7.1 (refs 3 and 4). The intron domain-switch variants were isolated as genetic suppressors of a splicing-defective P7.1 deletion in the td intron. This unprecedented example of suppression through inter-intron sequence substitution indicates that the introns are in a state of genetic flux and implies the functional interchangeability of the two analogous but nonidentical P7.1 elements. The implications of such recombination events are discussed in the light of the evolution of the introns themselves as well as that of their host genomes.  相似文献   

6.
A M Pyle  F L Murphy  T R Cech 《Nature》1992,358(6382):123-128
In catalysis by group I introns, the helix (P1) containing the RNA cleavage site must be positioned next to the guanosine binding site. We have identified a conserved adenine in the catalytic core that contributes to the stability of this arrangement and propose that it accepts a hydrogen bond from a specific 2'-OH in P1. Such base-backbone tertiary interactions may be generally important to the organization of RNA tertiary structure.  相似文献   

7.
The intron is an important component of eukaryotic gene. Extensive studies have been conducted to get a better understanding of its structure and function. This paper presents a brief review of the structure and function of introns in higher plant genes. It is shown that higher plant introns possess structural properties shared by all eukaryotic introns, however, they also exhibit a striking degree of diversity. The process of intron splicing in higher plant genes involves interaction between multiple cis-acting elements and trans-acting factors, such as 5′ splicing site, 3′ splicing site and many protein factors. The process of intron splicing is an important level at which gene expression is regulated. Especially alternative splicing of intron can regulate time and space of gene expression. In addition, some introns in higher plant genes also regulate gene expression by affecting the pattern of gene expression, enhancing the level of gene expression and driving the gene expression.  相似文献   

8.
9.
G Garriga  A M Lambowitz  T Inoue  T R Cech 《Nature》1986,322(6074):86-89
Group I introns include many mitochondrial ribosomal RNA and messenger RNA introns and the nuclear rRNA introns of Tetrahymena and Physarum. The splicing of precursor RNAs containing these introns is a two-step reaction. Cleavage at the 5' splice site precedes cleavage at the 3' splice site, the latter cleavage being coupled with exon ligation. Following the first cleavage, the 5' exon must somehow be held in place for ligation. We have now tested the reactivity of two self-splicing group I RNAs, the Tetrahymena pre-rRNA and the intron 1 portion of the Neurospora mitochondrial cytochrome b (cob) pre-mRNA, in the intermolecular exon ligation reaction (splicing in trans) described by Inoue et al. The different sequence specificity of the reactions supports the idea that the nucleotides immediately upstream from the 5' splice site are base-paired to an internal, 5' exon-binding site, in agreement with RNA structure models proposed by Davies and co-workers and others. The internal binding site is proposed to be involved in the formation of a structure that specifies the 5' splice site and, following the first step of splicing, to hold the 5' exon in place for exon ligation.  相似文献   

10.
Karunatilaka KS  Solem A  Pyle AM  Rueda D 《Nature》2010,467(7318):935-939
DEAD-box helicases are conserved enzymes involved in nearly all aspects of RNA metabolism, but their mechanisms of action remain unclear. Here, we investigated the mechanism of the DEAD-box protein Mss116 on its natural substrate, the group II intron ai5γ. Group II introns are structurally complex catalytic RNAs considered evolutionarily related to the eukaryotic spliceosome, and an interesting paradigm for large RNA folding. We used single-molecule fluorescence to monitor the effect of Mss116 on folding dynamics of a minimal active construct, ai5γ-D135. The data show that Mss116 stimulates dynamic sampling between states along the folding pathway, an effect previously observed only with high Mg(2+) concentrations. Furthermore, the data indicate that Mss116 promotes folding through discrete ATP-independent and ATP-dependent steps. We propose that Mss116 stimulates group II intron folding through a multi-step process that involves electrostatic stabilization of early intermediates and ATP hydrolysis during the final stages of native state assembly.  相似文献   

11.
Self-splicing introns in tRNA genes of widely divergent bacteria.   总被引:16,自引:0,他引:16  
B Reinhold-Hurek  D A Shub 《Nature》1992,357(6374):173-176
The organization of eukaryotic genes into exons separated by introns has been considered as a primordial arrangement but because it does not exist in eubacterial genomes it may be that introns are relatively recent acquisitions. A self-splicing group I intron has been found in cyanobacteria at the same position of the same gene (that encoding leucyl transfer RNA, UAA anticodon) as a similar group I intron of chloroplasts, which indicates that this intron predates the invasion of eukaryotic cells by cyanobacterial endosymbionts. But it is not clear from this isolated example whether introns are more generally present in different genes or in more diverse branches of the eubacteria. Many mitochondria have intron-rich genomes and were probably derived from the alpha subgroup of the purple bacteria (or Proteobacteria), so ancient introns might also have been retained in these bacteria. We describe here the discovery of two small (237 and 205 nucleotides) self-splicing group I introns in members of two proteobacterial subgroups, Agrobacterium tumefaciens (alpha) and Azoarcus sp. (beta). The introns are inserted in genes for tRNA(Arg) and tRNA(Ile), respectively, after the third anticodon nucleotide. Their occurrence in different genes of phylogenetically diverse bacteria indicates that group I introns have a widespread distribution among eubacteria.  相似文献   

12.
Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.  相似文献   

13.
Nucleotide sequence of the rat skeletal muscle actin gene   总被引:56,自引:0,他引:56  
R Zakut  M Shani  D Givol  S Neuman  D Yaffe  U Nudel 《Nature》1982,298(5877):857-859
The actins constitute a family of highly conserved proteins found in all eukaryotic cells. Their conservation through a very wide range of taxonomic groups and the existence of tissue-specific isoforms make the actin genes very interesting for the study of the evolution of genes and their controlling elements. On the basis of amino acid sequence data, at least six different mammalian actins have been identified (skeletal muscle, cardiac muscle, two smooth muscle actins and the cytoplasmic beta- and gamma-actins). Rat spleen DNA digested by the EcoRI restriction enzyme contains at least 12 different fragments with actin-like sequences but only one which hybridized, in very stringent conditions, with the skeletal muscle cloned cDNA probe. Here we describe the sequence of the actin gene in that fragment. The nucleotide sequence codes for two amino acids, Met-Cys, preceding the known N-terminal Asp of the mature protein. There are five small introns in the coding region and a large intron in the 5'-untranslated region. Comparison of the structure of the rat skeletal muscle actin gene with available data on actin genes from other organisms shows that while the sequenced actin genes from Drosophila and yeast have introns at different locations, introns located at codons specifying amino acids 41, 121, 204 and 267 have been preserved at least from the echinoderm to the vertebrates. A similar analysis has been done by Davidson. An intron at codon 150 is common to a plant actin gene and the skeletal muscle acting gene.  相似文献   

14.
15.
通过分析黑腹果蝇种组(Drosophila melanogasterspecies group)9个种亚组代表种和D.pseudoobscura的组蛋白基因H2A和H2B的内含子的碱基组成、替换速率、转换/颠换比、二级结构和系统发育关系等发现:整个序列长度变异范围在201 bp(ficusphila)到232 bp(takahashii)之间,替换速率为0.82,转换明显高于颠换,内含子和外显子结合区不遵循“GT-AG”和“AT-AC”模式,而是“TT-AG”模式,二级结构与系统分化关系具有相关性.我们认为组蛋白基因H2A和H2B的内含子是先起源的,在进化过程中由于承受的选择压力不同而发生了变异.  相似文献   

16.
E M Stone  K N Rothblum  R J Schwartz 《Nature》1985,313(6002):498-500
The function of introns in the evolution of genes can be explained in at least two ways: either introns appeared late in evolution and therefore could not have participated in the construction of primordial genes, or RNA splicing and introns existed in the earliest organisms but were lost during the evolution of the modern prokaryotes. The latter alternative allows the possibility of intron participation in the formation of primordial genes before the divergence of modern prokaryotes and eukaryotes. Blake suggested that evidence for intron-facilitated evolution of a gene might be found by comparing the borders of functional protein domains with the placement of introns. We therefore examined glyceraldehyde phosphate dehydrogenase (GAPDH), a glycolytic enzyme, because it is the first protein for which the following data are available: X-ray crystallographic studies demonstrating structurally independent protein 'domains' which were highly conserved during the divergence of prokaryotes and eukaryotes; and a study of genomic organization which mapped introns in the gene. Sequencing of the chicken GAPDH gene revealed 11 introns. We report here that sites of three of the introns (IV, VI and XI) correspond closely with the borders of the NAD-binding, catalytic and helical tail domains of the enzyme, supporting the hypothesis that introns did have a role in the evolution of primitive genes. In addition, other biochemical and structural data were used to construct a model of the intron-mediated assembly of the GAPDH gene that explains the existence of 10 introns.  相似文献   

17.
从猪肝脏提取基因组作为模板,分别扩增了Klf4、Klf5和Egr2的第3、第2和第1内含子,长度分别为916、1027和1342bp,并通过其两端连接的部分外显子序列与Genbank序列比对加以确认,并和人相应基因内含子作长度和序列同源性比较。结果表明,由内含子比对得出的这些基因在人和猪间的保守程度与这些基因在氨基酸水平上比对得出的保守程度相一致。  相似文献   

18.
Enzymatic activity of the conserved core of a group I self-splicing intron   总被引:16,自引:0,他引:16  
J W Szostak 《Nature》1986,322(6074):83-86
  相似文献   

19.
Blood coagulation can be initiated when factor VII or VIIa, a plasma protease, binds to its essential cofactor, tissue factor (TF), and proteolytically activates factors IX and X, triggering a cascade of events which eventually leads to the formation of thrombin and a fibrin clot. Plasma contains a lipoprotein-associated coagulation inhibitor (LACI) which inhibits activated factor X (Xa) directly and, in a Xa-dependent way, inhibits VII(a)/TF activity, presumably by forming a quaternary Xa/LACI/VII(a)/TF complex. Sequence analysis of complementary DNA clones has shown that LACI contains three tandemly repeated Kunitz-type serine protease inhibitory domains. To investigate the relationship between these Kunitz structures and LACI function, we have used site-directed mutagenesis to produce altered forms of LACI in which the residue at the active-site cleft of each Kunitz domain has been individually changed. The second Kunitz domain is required for efficient binding and inhibition of Xa, and both Kunitz domains 1 and 2 are required for the inhibition of VIIa/TF activity; but alteration of the active-site residue of the third Kunitz domain has no significant effect on either function. We propose that in the putative inhibitory complex, Kunitz domain 1 is bound to the active site of VII(a)/TF and that Kunitz domain 2 is bound to Xa's active site.  相似文献   

20.
A role for branchpoints in splicing in vivo   总被引:2,自引:0,他引:2  
G Rautmann  R Breathnach 《Nature》1985,315(6018):430-432
The nucleotides immediately surrounding intron/exon junctions of genes transcribed by RNA polymerase B can be derived from 'consensus' sequences for donor and acceptor splice sites by only a few base changes. Studies in vivo have underlined the importance of these junction nucleotides for splicing. In higher eukaryotes, no evidence has been found for specific internal intron sequences involved in splicing. However, the recent discovery that, in vitro, introns are excised in a lariat form where the 5' end of the intron is joined via a 2'-5'-phosphodiester linkage to an A residue (branchpoint acceptor) close to the 3' end of the intron, suggests that internal intron sequences may nonetheless be important for splicing. Indeed, in yeast nuclear genes, the internal sequence 5'-TACTAAC-3' (or close homologue) is essential for splicing in vivo. A proposed consensus sequence for branchpoints in mammalian introns is 5'-CT(A/G)A(C/T)-3'. This sequence resembles the essential yeast internal sequence. Are branchpoints involved in the splicing of introns of higher eukaryotes in vivo? We show here that a branchpoint sequence from a human globin gene (5'-CTGACTCTCTCTG-3') greatly enhances the efficiency of splicing of a 'synthetic' intron in HeLa cells. A mutated branchpoint sequence, 5'-CTCCTCTCTCTG-3', in which the branchpoint acceptor nucleotide A has been deleted and the neighbouring purine G mutated to a C, does not exhibit this enhancing capability. We conclude that branchpoints have an important function in the splicing process in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号