首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 'RNA world' hypothesis holds that during evolution the structural and enzymatic functions initially served by RNA were assumed by proteins, leading to the latter's domination of biological catalysis. This progression can still be seen in modern biology, where ribozymes, such as the ribosome and RNase P, have evolved into protein-dependent RNA catalysts ('RNPzymes'). Similarly, group I introns use RNA-catalysed splicing reactions, but many function as RNPzymes bound to proteins that stabilize their catalytically active RNA structure. One such protein, the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (TyrRS; CYT-18), is bifunctional and both aminoacylates mitochondrial tRNA(Tyr) and promotes the splicing of mitochondrial group I introns. Here we determine a 4.5-A co-crystal structure of the Twort orf142-I2 group I intron ribozyme bound to splicing-active, carboxy-terminally truncated CYT-18. The structure shows that the group I intron binds across the two subunits of the homodimeric protein with a newly evolved RNA-binding surface distinct from that which binds tRNA(Tyr). This RNA binding surface provides an extended scaffold for the phosphodiester backbone of the conserved catalytic core of the intron RNA, allowing the protein to promote the splicing of a wide variety of group I introns. The group I intron-binding surface includes three small insertions and additional structural adaptations relative to non-splicing bacterial TyrRSs, indicating a multistep adaptation for splicing function. The co-crystal structure provides insight into how CYT-18 promotes group I intron splicing, how it evolved to have this function, and how proteins could have incrementally replaced RNA structures during the transition from an RNA world to an RNP world.  相似文献   

2.
S Augustin  M W Müller  R J Schweyen 《Nature》1990,343(6256):383-386
Group II introns, which are classed together on the basis of a conserved secondary structure, are found in organellar genes of lower eukaryotes and plants. Like introns in nuclear pre-messenger RNA, they are excised by a two-step splicing reaction to generate branched circular RNAs, the so-called lariats. A remarkable feature of group II introns is their self-splicing activity in vitro. In the absence of a nucleotide cofactor, the intron RNAs catalyse two successive transesterification reactions which lead to autocatalytic excision of the lariat IVS from pre-mRNA and concomitantly to exon ligation. By virtue of its ability to specifically bind the 5' exon, the intron can also catalyse such reactions on exogenous RNA substrates. This sequence-specific attachment could enable group II introns to integrate into unrelated RNAs by reverse splicing, in a process similar to that described for the self-splicing Tetrahymena group I intron. Here we report that group II lariat IVS can indeed reintegrate itself into an RNA composed of the ligated exons in vitro. This occurs by a process of self-splicing that completely reverses both transesterification steps of the forward reaction: it involves a transition of the 2'-5' phosphodiester bond of the lariat RNA into the 3'-5' bond of the reconstituted 5' splice junction.  相似文献   

3.
Retrotransposition of a bacterial group II intron   总被引:13,自引:0,他引:13  
Cousineau B  Lawrence S  Smith D  Belfort M 《Nature》2000,404(6781):1018-1021
  相似文献   

4.
G Garriga  A M Lambowitz  T Inoue  T R Cech 《Nature》1986,322(6074):86-89
Group I introns include many mitochondrial ribosomal RNA and messenger RNA introns and the nuclear rRNA introns of Tetrahymena and Physarum. The splicing of precursor RNAs containing these introns is a two-step reaction. Cleavage at the 5' splice site precedes cleavage at the 3' splice site, the latter cleavage being coupled with exon ligation. Following the first cleavage, the 5' exon must somehow be held in place for ligation. We have now tested the reactivity of two self-splicing group I RNAs, the Tetrahymena pre-rRNA and the intron 1 portion of the Neurospora mitochondrial cytochrome b (cob) pre-mRNA, in the intermolecular exon ligation reaction (splicing in trans) described by Inoue et al. The different sequence specificity of the reactions supports the idea that the nucleotides immediately upstream from the 5' splice site are base-paired to an internal, 5' exon-binding site, in agreement with RNA structure models proposed by Davies and co-workers and others. The internal binding site is proposed to be involved in the formation of a structure that specifies the 5' splice site and, following the first step of splicing, to hold the 5' exon in place for exon ligation.  相似文献   

5.
E M Mota  R A Collins 《Nature》1988,332(6165):654-656
The discovery of intervening sequences (introns) in eukaryotic genes has raised questions about the origin and evolution of these sequences. Hypotheses concerning these topics usually consider the intron as a unit that could be lost or gained over time, or as a region within which recombination can occur to facilitate the production of new proteins by exon shuffling. Additional complexities are observed in introns of mitochondrial and chloroplast genes which contain secondary structures required for messenger RNA splicing and open-reading frames encoding proteins. Here we describe differences in the organization of protein-coding sequences in the intron of the mitochondrial ND1 gene in two closely related species of Neurospora. These differences show that intron sequences involved in secondary structure formation and in protein coding can evolve as physically distinct elements. Indeed, the secondary structure elements of the ND1 intron can contain two different coding sequences located at two different positions within the intron.  相似文献   

6.
Mitochondrial splicing requires a protein from a novel helicase family   总被引:38,自引:0,他引:38  
B Séraphin  M Simon  A Boulet  G Faye 《Nature》1989,337(6202):84-87
  相似文献   

7.
Antibiotic inhibition of group I ribozyme function   总被引:21,自引:0,他引:21  
U von Ahsen  J Davies  R Schroeder 《Nature》1991,353(6342):368-370
The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.  相似文献   

8.
A role for branchpoints in splicing in vivo   总被引:2,自引:0,他引:2  
G Rautmann  R Breathnach 《Nature》1985,315(6018):430-432
The nucleotides immediately surrounding intron/exon junctions of genes transcribed by RNA polymerase B can be derived from 'consensus' sequences for donor and acceptor splice sites by only a few base changes. Studies in vivo have underlined the importance of these junction nucleotides for splicing. In higher eukaryotes, no evidence has been found for specific internal intron sequences involved in splicing. However, the recent discovery that, in vitro, introns are excised in a lariat form where the 5' end of the intron is joined via a 2'-5'-phosphodiester linkage to an A residue (branchpoint acceptor) close to the 3' end of the intron, suggests that internal intron sequences may nonetheless be important for splicing. Indeed, in yeast nuclear genes, the internal sequence 5'-TACTAAC-3' (or close homologue) is essential for splicing in vivo. A proposed consensus sequence for branchpoints in mammalian introns is 5'-CT(A/G)A(C/T)-3'. This sequence resembles the essential yeast internal sequence. Are branchpoints involved in the splicing of introns of higher eukaryotes in vivo? We show here that a branchpoint sequence from a human globin gene (5'-CTGACTCTCTCTG-3') greatly enhances the efficiency of splicing of a 'synthetic' intron in HeLa cells. A mutated branchpoint sequence, 5'-CTCCTCTCTCTG-3', in which the branchpoint acceptor nucleotide A has been deleted and the neighbouring purine G mutated to a C, does not exhibit this enhancing capability. We conclude that branchpoints have an important function in the splicing process in vivo.  相似文献   

9.
10.
Li Y  Bor YC  Misawa Y  Xue Y  Rekosh D  Hammarskjöld ML 《Nature》2006,443(7108):234-237
Alternative splicing is a key factor contributing to genetic diversity and evolution. Intron retention, one form of alternative splicing, is common in plants but rare in higher eukaryotes, because messenger RNAs with retained introns are subject to cellular restriction at the level of cytoplasmic export and expression. Often, retention of internal introns restricts the export of these mRNAs and makes them the targets for degradation by the cellular nonsense-mediated decay machinery if they contain premature stop codons. In fact, many of the database entries for complementary DNAs with retained introns represent them as artefacts that would not affect the proteome. Retroviruses are important model systems in studies of regulation of RNAs with retained introns, because their genomic and mRNAs contain one or more unspliced introns. For example, Mason-Pfizer monkey virus overcomes cellular restrictions by using a cis-acting RNA element known as the constitutive transport element (CTE). The CTE interacts directly with the Tap protein (also known as nuclear RNA export factor 1, encoded by NXF1), which is thought to be a principal export receptor for cellular mRNA, leading to the hypothesis that cellular mRNAs with retained introns use cellular CTE equivalents to overcome restrictions to their expression. Here we show that the Tap gene contains a functional CTE in its alternatively spliced intron 10. Tap mRNA containing this intron is exported to the cytoplasm and is present in polyribosomes. A small Tap protein is encoded by this mRNA and can be detected in human and monkey cells. Our results indicate that Tap regulates expression of its own intron-containing RNA through a CTE-mediated mechanism. Thus, CTEs are likely to be important elements that facilitate efficient expression of mammalian mRNAs with retained introns.  相似文献   

11.
Self-splicing introns in tRNA genes of widely divergent bacteria.   总被引:16,自引:0,他引:16  
B Reinhold-Hurek  D A Shub 《Nature》1992,357(6374):173-176
The organization of eukaryotic genes into exons separated by introns has been considered as a primordial arrangement but because it does not exist in eubacterial genomes it may be that introns are relatively recent acquisitions. A self-splicing group I intron has been found in cyanobacteria at the same position of the same gene (that encoding leucyl transfer RNA, UAA anticodon) as a similar group I intron of chloroplasts, which indicates that this intron predates the invasion of eukaryotic cells by cyanobacterial endosymbionts. But it is not clear from this isolated example whether introns are more generally present in different genes or in more diverse branches of the eubacteria. Many mitochondria have intron-rich genomes and were probably derived from the alpha subgroup of the purple bacteria (or Proteobacteria), so ancient introns might also have been retained in these bacteria. We describe here the discovery of two small (237 and 205 nucleotides) self-splicing group I introns in members of two proteobacterial subgroups, Agrobacterium tumefaciens (alpha) and Azoarcus sp. (beta). The introns are inserted in genes for tRNA(Arg) and tRNA(Ile), respectively, after the third anticodon nucleotide. Their occurrence in different genes of phylogenetically diverse bacteria indicates that group I introns have a widespread distribution among eubacteria.  相似文献   

12.
Adams PL  Stahley MR  Kosek AB  Wang J  Strobel SA 《Nature》2004,430(6995):45-50
The discovery of the RNA self-splicing group I intron provided the first demonstration that not all enzymes are proteins. Here we report the X-ray crystal structure (3.1-A resolution) of a complete group I bacterial intron in complex with both the 5'- and the 3'-exons. This complex corresponds to the splicing intermediate before the exon ligation step. It reveals how the intron uses structurally unprecedented RNA motifs to select the 5'- and 3'-splice sites. The 5'-exon's 3'-OH is positioned for inline nucleophilic attack on the conformationally constrained scissile phosphate at the intron-3'-exon junction. Six phosphates from three disparate RNA strands converge to coordinate two metal ions that are asymmetrically positioned on opposing sides of the reactive phosphate. This structure represents the first splicing complex to include a complete intron, both exons and an organized active site occupied with metal ions.  相似文献   

13.
R A Collins  B J Saville 《Nature》1990,345(6271):177-179
The sporadic distribution of similar introns in organelle, nuclear ribosomal RNA and bacteriophage genes suggests that at least some of these introns are mobile genetic elements. Some plasmids in fungal mitochondria contain intron-like sequences and, like introns, they have scattered distributions within and among species. The occurrence and evolutionary importance of such horizontal transfer of DNA, not only between fungi, but among a wide range of organisms have been matters of much discussion. Here, we report experimental evidence for transfer of Neurospora mitochondrial plasmids from one mitochondrial genotype to another at high frequency during unstable vegetative cell fusion. Exchange of mitochondrial and nuclear genomes can also occur. These observations suggest that vegetative fusion may have a more important role in the mitochondrial genetic structure of natural populations than is generally thought, and may provide an explanation for the distribution of certain plasmids and possibly other mobile genetic elements.  相似文献   

14.
The intron is an important component of eukaryotic gene. Extensive studies have been conducted to get a better understanding of its structure and function. This paper presents a brief review of the structure and function of introns in higher plant genes. It is shown that higher plant introns possess structural properties shared by all eukaryotic introns, however, they also exhibit a striking degree of diversity. The process of intron splicing in higher plant genes involves interaction between multiple cis-acting elements and trans-acting factors, such as 5′ splicing site, 3′ splicing site and many protein factors. The process of intron splicing is an important level at which gene expression is regulated. Especially alternative splicing of intron can regulate time and space of gene expression. In addition, some introns in higher plant genes also regulate gene expression by affecting the pattern of gene expression, enhancing the level of gene expression and driving the gene expression.  相似文献   

15.
Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.  相似文献   

16.
Boudvillain M  de Lencastre A  Pyle AM 《Nature》2000,406(6793):315-318
Group II introns are self-splicing RNAs that are commonly found in the genes of plants, fungi, yeast and bacteria. Little is known about the tertiary structure of group II introns, which are among the largest natural ribozymes. The most conserved region of the intron is domain 5 (D5), which, together with domain 1 (D1), is required for all reactions catalysed by the intron. Despite the importance of D5, its spatial relationship and tertiary contacts to other active-site constituents have remained obscure. Furthermore, D5 has never been placed directly at a site of catalysis by the intron. Here we show that a set of tertiary interactions (lambda-lambda') links catalytically essential regions of D5 and D1, creating the framework for an active-site and anchoring it at the 5' splice site. Highly conserved elements similar to components of the lambda-lambda' interaction are found in the eukaryotic spliceosome.  相似文献   

17.
Enzymatic activity of the conserved core of a group I self-splicing intron   总被引:16,自引:0,他引:16  
J W Szostak 《Nature》1986,322(6074):83-86
  相似文献   

18.
Alternative pre-mRNA splicing and proteome expansion in metazoans   总被引:77,自引:0,他引:77  
Maniatis T  Tasic B 《Nature》2002,418(6894):236-243
The protein coding sequences of most eukaryotic messenger RNA precursors (pre-mRNAs) are interrupted by non-coding sequences called introns. Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing selectively joins different protein coding elements to form mRNAs that encode proteins with distinct functions, and is therefore an important source of protein diversity. The elaboration of this mechanism may have had a significant role in the expansion of metazoan proteomes during evolution.  相似文献   

19.
B C Rymond  M Rosbash 《Nature》1985,317(6039):735-737
Analysis of messenger RNA splicing in yeast and in metazoa has led to the identification of an RNA molecule in a lariat conformation. This structure has been found as an mRNA splicing intermediate in vitro and identical molecules have been identified in vivo. Lariat formation involves cleavage of the precursor at the 5' splice site (5' SS) and the formation of a 2'-5' phosphodiester bond between the guanosine residue at the 5' end of the intron and an adenosine within the intron. The yeast branchpoint is located within the absolutely conserved TACTAAC box (that is, the last A of the TACTAAC box is the site of formation of the 2'-5' phosphodiester bond with the 5' end of the intron)3,4. Moreover, efficient 5' SS cleavage and lariat formation require proper sequences at the 5' splice junction and within the TACTAAC box. Here we demonstrate that 5' SS cleavage and lariat formation take place in vitro in the absence of the 3' SS and much of the 3' junction. These results are discussed in light of possible differences between yeast and metazoan mRNA splicing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号