首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
光纤激光器具有转换效率高、光束质量好、散热方便、结构紧凑等优点,是高功率激光器领域的研究热点。本文设计了温控、水冷系统使半导体激光二极管泵浦源稳定在工作波长。通过设计的包层泵浦功率剥除器,有效地剥离了未被掺镱(Yb3+)双包层光纤吸收的泵浦光。采用20w的半导体二极管激光器作为泵浦源,5m长掺镱(Yb3+)双包层光纤作为增益介质,光纤光栅作为腔镜,在泵浦功率为19w时,获得10.42W的激光输出,激光波长1062nm,光一光转换效率约54.8%。  相似文献   

2.
报道了一种后向泵浦的大模面积掺镱双包层光纤放大器,输出功率为1.12 W,放大后信号光的3 dB线宽为0.028 nm,并保持了输入信号光的优良光谱特性.首次从实验上深入研究了在该种放大器中,前向输出功率、后向输出功率随泵浦功率变化的规律,为更高效率和更高功率的双包层光纤放大器的研制提供了重要的实验数据.  相似文献   

3.
宋志强  马良柱  常军  王昌  刘统玉 《山东科学》2009,22(6):35-37,41
研制了一种连续输出掺Yb3+双包层光纤激光器。采用7只8W半导体泵浦激光器(LD),自行设计了串联式恒流源驱动电路,利用光纤合束器技术构成大功率泵浦光源。重点解决了双包层光纤的低损耗熔接问题,在20m吸收系数为0.8dB/m@915nm的掺Yb3+光纤中获得了最高30.8W的输出功率,激光器斜率效率达76.8%,电光转换效率接近30%。  相似文献   

4.
用于光纤传感网的窄线宽多波长光纤光源研究   总被引:1,自引:0,他引:1  
窄线宽多波长光纤光源是光纤传感系统中的重要光源,可同时为多路复用技术中的传感器阵列提供所需的多个工作波长.为此对多波长光纤光源的稳态输出进行了数值模拟,理论分析了未泵浦掺铒光纤长度对输出线宽的窄化作用.同时实验构建了一种带有单程反馈和线宽窄化机制的多波长光纤光源,测量分析了这2种机制以及激光腔输出耦合比对多波长输出结果的影响.实验实现功率谱不平坦度〈土3dB时,多波长个数可达27个,3dB线宽约0.06nm,波长在50GHz范围内整体连续可调.  相似文献   

5.
提出了一种掺饵光纤放大器的计算模型,并在模型的指导下进行结构优化和参数优化,设计了低噪声系数(NF=3.2-3.8dB)、较高增益(G>40dB)的前置掺饵光纤放大器(波长:150nm;输入光功率:-30~-40dBm)。  相似文献   

6.
运用稳态粒子数速率方程和传播方程理论, 研究Pr3+∶ZBLAN光纤中基于 4f5d能级的上转换紫外光纤放大器的激光动力学过程. 计算了输入信号饱和功率、 输出功率、 斜率效率和最佳光纤长度等参量, 并与光纤振荡器的结果做了比较. 结果表明, 输入信号存在一个饱和功率, 大于该值时, 输出功率基本上与输入信号功率无关. 信号光饱和功率约为3 mW, 且几乎不随泵浦功率和光纤长度变化. 在相同条件下, 放大器输出功率和斜率效率可达到振荡器的2~3倍. 利用光纤放大器可有效提高Pr3+∶ZBLAN光纤4f5d上转换紫外激光器系统的输出功率和斜率效率.  相似文献   

7.
光纤激光器具有转换效率高、光束质量好、散热方便、结构紧凑等优点,是高功率激光器领域的研究热点。本文设计了温控、水冷系统使半导体激光二极管泵浦源稳定在工作波长。通过设计的包层泵浦功率剥除器,有效地剥离了未被掺镱(Yb3+)双包层光纤吸收的泵浦光。采用20 W的半导体二极管激光器作为泵浦源,5 m长掺镱(Yb3+)双包层光纤作为增益介质,光纤光栅作为腔镜,在泵浦功率为19 W时,获得10.42 W的激光输出,激光波长1 062 nm,光-光转换效率约54.8%。  相似文献   

8.
掺Er^3+/Yb^3+光纤激光的理论分析   总被引:1,自引:1,他引:0  
提出了光纤腔掺Er^3+/Yb^3+光纤激光的模型和速率方程,推导了阈值泵浦功率的解析公式,运用数值求解方法,得以了光纤中反转粒子数分布,小信号增益系数和激光的输出功率,同时也给出了数值曲线,可用于掺Er^3+/Yb^3+光纤激光器的优化设计。  相似文献   

9.
介绍了Er^3+/Yb^3+共掺杂的能级模型,分析了Er^3+和Yb^3+之间能量传递的过程,在此基础上引入传输矩阵的模型,在计算Er3+离子转换率的基础上,模拟了Er^3+/Yb^3+共掺杂DFB光纤激光器的输出特性,并且比较了泵浦光功率、损耗和光纤光栅长度对激光器输出功率的影响。  相似文献   

10.
通过对速率方程的求解,得到了掺Yb3+双包层光纤激光器的输出功率表达式■。利用Matlab软件对其进行了数值模拟,分析了泵浦波长、泵浦功率、光纤长度、光纤掺杂浓度、输出腔镜对激光器输出功率的影响。结果表明,用915 nm和975 nm进行泵浦时所需的最佳光纤长度是不相同的,掺杂浓度对光纤长度的最佳值也存在影响,输出腔镜的反射率应尽量小,合理地最优化系统参数能使掺Yb3+双包层光纤激光器输出功率达到最优。  相似文献   

11.
采用光纤光栅作为光纤激光器的谐振腔, 利用中心波长为970 nm的半导体激光器(LD)作为抽运源. 对准圆形内包层的掺Yb3+双包层光纤进行泵浦, 其抽运功率为11.8 W, 实现了7.5 W的单模激光输出, 输出波长为1 080 nm, 斜效率63.5%.  相似文献   

12.
掺Yb^3+双包层光纤激光器   总被引:2,自引:0,他引:2  
研究了掺Yb^3 双包层光纤激光器,测量了掺Yb^3 双包层光纤的荧光光谱特性和激光光谱特性,实验表明,中心波长为1.078μm的激光输出,最大输出功率为233mW,斜率效率为79.6%,光-光转换效率为30.2%。  相似文献   

13.
阐述了掺铒光纤放大器(EDFA)的一种新的建模方法。介绍了研制的泵浦波长为980mm的EFA系统。该系统对泵浦实行恒流和恒温控制并可对输出功率实行恒功率控制。EDFA工作于恒功率状态时,输出信号功率为16×(1±0.02)dBm。该系统可用于长距离,大容量,高速度的波分复用系统和CATV系统中。  相似文献   

14.
郑立军 《长春大学学报》2013,(6):673-676,688
从理论和实验两方面研究了掺铒光纤放大器的输出特性。在理论上用数值模拟的方法研究了泵浦功率、信号光强度、光纤长度等参数的变化对输出特性的影响。通过实验研究了泵浦光源的输出功率和驱动电流的关系、放大器的增益与泵浦功率和输入信号光功率的关系。研究表明实验结果和数值模拟结果相吻合,对掺铒光纤放大器的结构设计,以及改善掺铒光纤放大器的增益特性有一定的指导作用。  相似文献   

15.
 提出一种基于法布里-珀罗滤波器和饱和吸收体的单纵模掺铥光纤激光器。利用窄带法布里-珀罗滤波器和未泵浦掺铥光纤的饱和吸收体来实现激光的单纵模输出。在室温条件下,实现中心波长1941.6 nm、信噪比32 dB的稳定激光输出。通过100 min的连续观测,激光器的中心波长偏移小于0.04 nm,激光输出功率抖动小于1.5 dB,证明单纵模掺铥光纤激光器可以在一段时间内稳定工作。  相似文献   

16.
提出了一种在单模光纤负群速度色散区由基孤子产生超短光脉冲的新方法,即当波长位于光纤负色散区的基孤子信号脉冲和波长位于光纤正色散区的泵浦脉冲在光纤中共同传输,光纤零色散波长位于基孤子波长与泵浦脉冲波长中间附近时,交叉相位调制能使基孤子压缩.数值计算表明,入射泵浦脉冲越强,由基孤子信号脉冲产生的光脉冲的宽度越窄,峰值功率越高,而且所需的光纤长度越短,但是压缩质量减小.当泵浦脉冲的阶数不变、泵浦脉冲脉宽减小时,信号脉冲的压缩因子增大.  相似文献   

17.
基于激光器稳态速率方程理论,分析了掺Yb3 双包层光纤激光器的输出特性,讨论了谐振腔结构、泵浦方式以及在近阈值和强泵浦情况下,输出反射镜的反射率对输出功率的影响。通过数值计算分析可知,对于F-P腔结构的双包层光纤激光器,采用后向泵浦比采用前向泵浦获得的输出功率大,增益分布也较后者平坦;在近阈值情况下进行泵浦,输出耦合镜有一个最佳反射率,使输出功率达到最大。一般反射率应取在0.4~0.7之间,但在强泵浦情况下,输出反射镜的反射率越低越好。同时还发现,由于光纤对激光存在着再吸收,因此在一定的泵浦功率下,增益介质长度存在一个最佳长度值,使输出功率达到最大。一般光纤应在70~90 m之间。  相似文献   

18.
 通过构建基于非线性偏振旋转机理的掺Yb3+环形光纤激光器, 获得了等幅和非等幅两种双波长输出状态, 分别测量其输出功率. 结果表明, 由于不同波段激光增益的差别较大, 因此不同波长的转换效率相差较大.  分析了双波长输出的可调谐特性, 并考察了泵浦功率对1 029 nm和1 048 nm双波长输出的影响.   观察到2~7个波长的输出, 并测量了其泵浦功率区间及最大输出功率.   相似文献   

19.
本介绍了一种国产LD泵浦的高功率掺YB^3 双包层光纤激光器,泵浦功率2.15W时,得到了54W的功率输出,斜率效率达到86.1%.并对光纤激光器的光谱特性、时域特性进行了初步的研究和分析.  相似文献   

20.
一种复合腔结构的稳定单纵模(SLM)掺铒光纤激光器,其复合腔结构由主环形有源腔和2个次级无源腔组成.这种激光器是利用布拉格光纤光栅(FBG)和复合腔结构相结合来共同选模.在整个波长调节范围内边模抑制比大于45dB,在1550.24nm附近边模抑制比可以达到最大值51dB.当泵浦功率为80mW时,掺铒光纤激光器输出功率为20.51mW.通过应用多环型腔结构,激光器的输出很稳定,在25min的观察时间内,输出功率的变化小于0.02%,实现了稳定的激光功率输出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号