首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The underlying causes of obesity are poorly understood but probably involve complex interactions between many neurotransmitter and neuropeptide systems involved in the regulation of food intake and energy balance. Three pieces of evidence indicate that the neuropeptide melanin-concentrating hormone (MCH) is an important component of this system. First, MCH stimulates feeding when injected directly into rat brains; second, the messenger RNA for the MCH precursor is upregulated in the hypothalamus of genetically obese mice and in fasted animals; and third, mice lacking MCH eat less and are lean. MCH antagonists might, therefore, provide a treatment for obesity. However, the development of such molecules has been hampered because the identity of the MCH receptor has been unknown until now. Here we show that the 353-amino-acid human orphan G-protein-coupled receptor SLC-1 expressed in HEK293 cells binds MCH with sub-nanomolar affinity, and is stimulated by MCH to mobilize intracellular Ca2+ and reduce forskolin-elevated cyclic AMP levels. We also show that SLC-1 messenger RNA and protein is expressed in the ventromedial and dorsomedial nuclei of the hypothalamus, consistent with a role for SLC-1 in mediating the effects of MCH on feeding.  相似文献   

2.
3.
F Ango  L Prézeau  T Muller  J C Tu  B Xiao  P F Worley  J P Pin  J Bockaert  L Fagni 《Nature》2001,411(6840):962-965
G-protein-coupled receptors (GPCRs) transduce signals from extracellular transmitters to the inside of the cell by activating G proteins. Mutation and overexpression of these receptors have revealed that they can reach their active state even in the absence of agonist, as a result of a natural shift in the equilibrium between their inactive and active conformations. Such agonist-independent (constitutive) activity has been observed for the glutamate GPCRs (the metabotropic glutamate receptors mGluR1a and mGluR5) when they are overexpressed in heterologous cells. Here we show that in neurons, the constitutive activity of these receptors is controlled by Homer proteins, which bind directly to the receptors' carboxy-terminal intracellular domains. Disruption of this interaction by mutagenesis or antisense strategies, or expression of endogenous Homer1a (H1a), induces constitutive activity in mGluR1a or mGluR5. Our results show that these glutamate GPCRs can be directly activated by intracellular proteins as well as by agonists.  相似文献   

4.
The recent cloning of the complementary DNAs and/or genes for several receptors linked to guanine nucleotide regulatory proteins including the adrenergic receptors (alpha 1, alpha 2A, alpha 2B, beta 1, beta 2), several subtypes of the muscarinic cholinergic receptors, and the visual 'receptor' rhodopsin has revealed considerable similarity in the primary structure of these proteins. In addition, all of these proteins contain seven putative transmembrane alpha-helices. We have previously described a genomic clone, G-21, isolated by cross-hybridization at reduced stringency with a full length beta 2-adrenergic receptor probe. This clone contains an intronless gene which, because of its striking sequence resemblance to the adrenergic receptors, is presumed to encode a G-protein-coupled receptor. Previous attempts to identify this putative receptor by expression studies have failed. We now report that the protein product of the genomic clone, G21, transiently expressed in monkey kidney cells has all the typical ligand-binding characteristics of the 5-hydroxytryptamine (5-HT1A) receptor.  相似文献   

5.
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor   总被引:1,自引:0,他引:1  
G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11?? outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.  相似文献   

6.
G蛋白偶联受体研究进展   总被引:1,自引:0,他引:1  
G蛋白偶联受体(GPCRs)是体内最大的蛋白质超家族,根据结构的同源性,主要分为A、B、C3族.GPCRs配体的多样性决定配体结合域的多样性.受体分子内相互作用力的破坏、质子化、构象改变、与G蛋白的偶联及受体二聚化参与了GPCRs的活化过程,近年发现GPCRs的失敏和内吞对受体功能调节亦非常重要,本文拟综述以上内容的研究进展.  相似文献   

7.
G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human β(2) adrenergic receptor (β(2)AR) as a guide, we designed a β(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent β(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound β(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5?? resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30?μs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.  相似文献   

8.
The mas oncogene encodes an angiotensin receptor   总被引:24,自引:0,他引:24  
T R Jackson  L A Blair  J Marshall  M Goedert  M R Hanley 《Nature》1988,335(6189):437-440
The class of receptors coupled to GTP-binding proteins share a conserved structural motif which is described as a 'seven-transmembrane segment' following the prediction that these hydrophobic segments form membrane-spanning alpha-helices. Identified examples include the mammalian opsins, alpha 1-, alpha 2-, beta 1- and beta 2-adrenergic receptors, the muscarinic receptor family, the 5-HT1C-receptor, and the substance-K receptor. In addition, two mammalian genes have been identified that code for predicted gene products with sequence similarity to these receptors, but whose ligand specificity is unknown namely, G21 and the mas oncogene. The mas oncogene shows the greatest sequence similarity to the substance-K receptor, and on this basis it was predicted that it would encode a peptide receptor with mitogenic activity which would act through the inositol lipid signalling pathways. The mas oncogene product was transiently expressed in Xenopus oocytes, and stably expressed in a transfected mammalian cell line. The results demonstrate that the mas gene product is a functional angiotensin receptor.  相似文献   

9.
The mammalian G proteins transduce information from extracellular signals, including neurotransmitters, hormones and sensory stimuli, into regulation of effector enzymes or ion channels within cells. Triggered by appropriate extracellular signals, receptor proteins specifically activate members of the G protein family by catalysing replacement of GDP by GTP at the guanine nucleotide binding site. Like the receptor proteins, the heterotrimeric G proteins exhibit impressive structural similarities, suggesting that all receptor-G protein interactions use homologous structural elements and a single molecular mechanism. Topologically equivalent portions of each G protein may therefore interact with the appropriate receptor. We recently predicted the secondary structure of a composite G protein alpha-chain and proposed that a predicted amphipathic alpha-helix at the extreme carboxy-terminus of the polypeptide directly contacts receptors. This proposal has now been confirmed by sequencing complementary DNAs of the gene that encodes the alpha-chain (alpha s) of the stimulatory regulator (Gs) of adenylyl cyclase in wild-type cells and in a mutant mouse S49 lymphoma cell line, unc, in which Gs cannot be activated by hormone receptors. The sequences reveal a point mutation in the unc gene that substitutes a proline residue for an arginine near the carboxy-terminus of the alpha s-polypeptide. Expression of recombinant alpha s-unc in genetically alpha s-deficient S49 cells reproduces the unc phenotype.  相似文献   

10.
11.
G-protein-coupled receptor heterodimerization modulates receptor function.   总被引:29,自引:0,他引:29  
B A Jordan  L A Devi 《Nature》1999,399(6737):697-700
The opioid system modulates several physiological processes, including analgesia, the stress response, the immune response and neuroendocrine function. Pharmacological and molecular cloning studies have identified three opioid-receptor types, delta, kappa and mu, that mediate these diverse effects. Little is known about the ability of the receptors to interact to form new functional structures, the simplest of which would be a dimer. Structural and biochemical studies show that other G-protein-coupled receptors (GPCRs) interact to form homodimers. Moreover, two non-functional receptors heterodimerize to form a functional receptor, suggesting that dimerization is crucial for receptor function. However, heterodimerization between two fully functional receptors has not been documented. Here we provide biochemical and pharmacological evidence for the heterodimerization of two fully functional opioid receptors, kappa and delta. This results in a new receptor that exhibits ligand binding and functional properties that are distinct from those of either receptor. Furthermore, the kappa-delta heterodimer synergistically binds highly selective agonists and potentiates signal transduction. Thus, heterodimerization of these GPCRs represents a novel mechanism that modulates their function.  相似文献   

12.
A mutation that prevents GTP-dependent activation of the alpha chain of Gs   总被引:18,自引:0,他引:18  
Membrane-bound G proteins carry information from receptors on the outside of cells to effector proteins inside cells. The alpha subunits of these heterotrimeric proteins bind and hydrolyse GTP and control the specificity of interactions with receptor and effector elements. Signalling by G proteins involves a cycle in which the inactive alpha beta gamma-GDP complex dissociates to produce alpha*-GTP, which is capable of activating the effector enzyme or ion channel; the alpha*-GTP complex hydrolyses bound GTP and reassociates with beta gamma to form the inactive complex. We have characterized a mutation that interrupts this GTP-driven cycle in alpha s, the alpha-chain of Gs, the G protein that stimulates adenylyl cyclase. The mutation converts a glycine to an alanine residue in the presumed GDP-binding domain of alpha s. The location and biochemical consequences of this mutation suggest a common mechanism by which binding of GTP or ATP may induce changes in the conformation of a number of nucleoside triphosphate binding proteins.  相似文献   

13.
E Cooper  S Couturier  M Ballivet 《Nature》1991,350(6315):235-238
Neuronal nicotinic acetylcholine receptors are members of a gene family of ligand-gated transmitter receptors that includes muscle nicotinic receptors, GABAA receptors and glycine receptors. Several lines of evidence indicate that neuronal nicotinic receptors can be made up of only two subunits, an alpha (alpha) subunit which binds ligand, and a non-alpha (n alpha) or beta (beta) subunit. The stoichiometry of each subunit in the functional receptor has been difficult to assess, however. Estimates of the molecular weight of neuronal nicotonic receptor macromolecules suggest that these receptors contain at least four subunits but probably not more than five. We have examined the subunit stoichiometry of the chick neuronal alpha 4/n alpha 1 receptor by first using site-directed mutagenesis to create subunits that confer different single channel properties on the receptor. Co-injection with wild-type and mutant subunits led to the appearance of receptors with wild-type, mutant and hybrid conductances. From the number of hybrid conductances, we could deduce the number of each subunit in the functional receptor.  相似文献   

14.
H Riedel  T J Dull  J Schlessinger  A Ullrich 《Nature》1986,324(6092):68-70
The cell surface receptors for insulin and epidermal growth factor (EGF) appear to share a common evolutionary origin, as suggested by structural similarity of cysteine-rich regions in their extracellular domains and a highly conserved tyrosine-specific protein kinase domain. Only minor similarity is found outside this catalytic domain, as expected for receptors that have different ligand specificities and generate different biological signals. The EGF receptor is a single polypeptide chain but the insulin receptor consists of distinct alpha and beta subunits that function as an alpha 2 beta 2 heterotetrameric receptor complex. Provoked by this major structural difference in two receptors that carry out parallel functions, we have designed a chimaeric receptor molecule comprising the extracellular portion of the insulin receptor joined to the transmembrane and intracellular domains of the EGF receptor to investigate whether one ligand will activate the tyrosine kinase domain of the receptor for the other ligand. We show here that the EGF receptor kinase domain of the chimaeric protein, expressed transiently in simian cells, is activated by insulin binding. This strongly suggests that insulin and EGF receptors employ closely related or identical mechanisms for signal transduction across the plasma membrane.  相似文献   

15.
P Marrack  J Kappler 《Nature》1988,332(6167):840-843
In the response of T cells to foreign antigens, the ligand for the T cell alpha/beta receptor is presented on a cell surface as a fragment of antigen complexed to one of the membrane molecules encoded in the major histocompatibility complex (MHC). The receptor apparently interacts via its variable elements (V beta, D beta, J beta, V alpha and J alpha) with residues within both the antigen and MHC portion of the ligand. The frequency of T cells responding to a conventional antigen plus self MHC is usually quite low, presumably reflecting the relative rarity of receptors with the particular combination of variable elements to match the antigen/MHC ligand. T cells also respond to allogeneic forms of MHC molecules in the absence of added antigen. In this case the frequency of responding T cells is very high. One hypothesis to explain this observation is that, in the absence of foreign antigen, MHC molecules are complexed to a large array of peptides derived from self-proteins. In this case the combination of the polymorphic MHC amino acid residues and many different self peptides presents so many possible ligands that the likelihood of recognition by a given T cell receptor is quite high. The recent crystallography experiments which revealed a dramatic binding cleft on the face of a human MHC molecule have given impetus to this view, but as yet there is no direct supporting evidence. We have recently described a close association between murine T cell receptors utilizing the V beta 17a element and reactivity to various allogeneic forms of the murine MHC molecule, I-E (ref. 8). In this paper, we show that this I-E ligand is detected on B cells, but not on I-E+ macrophages or fibroblasts expressing a transfected I-E gene. These results strongly suggest a B cell specific product combines with I-E to form the allogeneic ligand for V beta 17a+ receptors and thus support the concept of alloreactivity described above.  相似文献   

16.
Multiple D2 dopamine receptors produced by alternative RNA splicing   总被引:16,自引:0,他引:16  
Dopamine receptor belong to a large class of neurotransmitter and hormone receptors that are linked to their signal transduction pathways through guanine nucleotide binding regulatory proteins (G proteins). Pharmacological, biochemical and physiological criteria have been used to define two subcategories of dopamine receptors referred to as D1 and D2. D1 receptors activate adenylyl cyclase and are coupled with the Gs regulatory protein. By contrast, activation of D2 receptors results in various responses including inhibition of adenylyl cyclase, inhibition of phosphatidylinositol turnover, increase in K+ channel activity and inhibition of Ca2+ mobilization. The G protein(s) linking the D2 receptors to these responses have not been identified, although D2 receptors have been shown to both copurify and functionally reconstitute with both Gi and Go related proteins. The diversity of responses elicited by D2-receptor activation could reflect the existence of multiple D2 receptor subtypes, the identification of which is facilitated by the recent cloning of a complementary DNA encoding a rat D2 receptor. This receptor exhibits considerable amino-acid homology with other members of the G protein-coupled receptor superfamily. Here we report the identification and cloning of a cDNA encoding an RNA splice variant of the rat D2 receptor cDNA. This cDNA codes for a receptor isoform which is predominantly expressed in the brain and contains an additional 29 amino acids in the third cytoplasmic loop, a region believed to be involved in G protein coupling.  相似文献   

17.
G-protein-coupled receptors (GPCRs) comprise the largest family of membrane proteins in the human genome and mediate cellular responses to an extensive array of hormones, neurotransmitters and sensory stimuli. Although some crystal structures have been determined for GPCRs, most are for modified forms, showing little basal activity, and are bound to inverse agonists or antagonists. Consequently, these structures correspond to receptors in their inactive states. The visual pigment rhodopsin is the only GPCR for which structures exist that are thought to be in the active state. However, these structures are for the apoprotein, or opsin, form that does not contain the agonist all-trans retinal. Here we present a crystal structure at a resolution of 3 ? for the constitutively active rhodopsin mutant Glu 113 Gln in complex with a peptide derived from the carboxy terminus of the α-subunit of the G protein transducin. The protein is in an active conformation that retains retinal in the binding pocket after photoactivation. Comparison with the structure of ground-state rhodopsin suggests how translocation of the retinal β-ionone ring leads to a rotation of transmembrane helix 6, which is the critical conformational change on activation. A key feature of this conformational change is a reorganization of water-mediated hydrogen-bond networks between the retinal-binding pocket and three of the most conserved GPCR sequence motifs. We thus show how an agonist ligand can activate its GPCR.  相似文献   

18.
Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G(q/11)-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G(i/o)-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.  相似文献   

19.
The inhibition of voltage-dependent Ca2+ channels in secretory cells by plasma membrane receptors is mediated by pertussis toxin-sensitive G proteins. Multiple forms of G proteins have been described, differing principally in their alpha subunits, but it has not been possible to establish which G-protein subtype mediates inhibition by a specific receptor. By intranuclear injection of antisense oligonucleotides into rat pituitary GH3 cells, the essential role of the Go-type G proteins in Ca(2+)-channel inhibition is established: the subtypes Go1 and Go2 mediate inhibition through the muscarinic and somatostatin receptors, respectively.  相似文献   

20.
Ben-Chaim Y  Chanda B  Dascal N  Bezanilla F  Parnas I  Parnas H 《Nature》2006,444(7115):106-109
Activation by agonist binding of G-protein-coupled receptors (GPCRs) controls most signal transduction processes. Although these receptors span the cell membrane, they are not considered to be voltage sensitive. Recently it was shown that both the activity of GPCRs and their affinity towards agonists are regulated by membrane potential. However, it remains unclear whether GPCRs intrinsically respond to changes in membrane potential. Here we show that two prototypical GPCRs, the m2 and m1 muscarinic receptors (m2R and m1R), display charge-movement-associated currents analogous to 'gating currents' of voltage-gated channels. The gating charge-voltage relationship of m2R correlates well with the voltage dependence of the affinity of the receptor for acetylcholine. The loop that couples m2R and m1R to their G protein has a crucial function in coupling voltage sensing to agonist-binding affinity. Our data strongly indicate that GPCRs serve as sensors for both transmembrane potential and external chemical signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号