首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The investigation was conducted on the spatial and temporal distributions of soil organic mater (SOM) in the mixed plantations of alder (Aluns crernastogyne) and cypress (Cupressus funebris ) (MPAC), which distributed in the hilly areas of central Sichuan Basin (HACSB). The results show that: (1) the spatial distribution of SOM among different sites at the same age are not significant before 15-year-old, but significant at 20-year-old, and not significant again after 25-year-old; (2) the SOM contents in 0-15 cm and 15-30 cm layers increase sharply from 10- to 15-year-old, and decline gradually from 15- to 30- year-old; the SOM contents of the 30-year-old PCP were 80. 38% and 78.42% higher than that of the 10-year-old, but 29.16% and 53.37% lower than that of 15-year-old in the 0-15 cm and 15-30 cm layers, respectively. The decrease of SOM contents would lead to the degradation of soil fertility and the decline of forest productivity.  相似文献   

2.
A study on the distribution characteristics of soil organic carbon (SOC) in the alpine meadow in the Eastern Qinghai-Tibet Plateau has been carried out. The results indicate that the content of soil organic carbon (C SOC) in the topsoil of terrace meadow (TM) ((67.16 ± 1.02) g·kg−1) is more than that in the soil of upland meadow (UM) ((63.42 ± 0.65) g·kg−1), while the C SOC in upland shrubland (US) ((67.49 ± 0.83) g·kg−1) is the most abundant in the scoreh stage (September). From May to September, the C SOC in the topsoil of UM and US tends to descend, but that of TM tends to ascend. As for the distribution of the C SOC and the density of SOC in the soil in the three sample areas, the data show that the deeper the soil, the lesser the content and density of SOC. The C SOC in US is higher than that in TM and UM; the C SOC in UM is the lowest at 0–10 cm soil depth. The density of SOC in US is always the lowest among UM, TM, and US at 0–40 cm depth, which shows that the storage of carbon in UM is more than that in US in the same range; the carbon pool capacity in UM is higher than that in US in the same range. Biography: ZHANG Wei (1979–), male, Lecturer, research direction: ecology of environment.  相似文献   

3.
There is limited knowledge with regard to the consumption of ethylene (C2H4) and methane (CH4) in volcanic forest soils containing low microbial carbon-to-organic carbon ratio, and to the responses of both consumptions to nitrogen and carbon additions. Temperate volcanic forest surface soils under three forest stands (e.g. Pinus sylvestris L., Cryptomeria japonica and Quercus serrata) were used to compare CH4 and C2H4 consumption by forest soils, and to study the effects of nitrogen sources and glucose on both consumptions. There was a good parallel between CH4 and C2H4 consumption by for- est soils, but mineralization reduced CH4 consumption rather than C2H4 consumption in forest soils, particularly in a Pinus forest soil. The stimulatory effect of glucose addition on both CH4 and C2H4 consumption by forest soils was increased by increasing the pre-incubation period after glucose addi- tion, and a largest stimulation occurred in the Pinus forest soil. The addition of KNO3-N at the rate of 100 μg·g1 significantly reduced the consumptions of both C2H4 and CH4 by forest soils (P≤0.05). In the presence of urea plus dicyandiamide, the consumption rates of C2H4 and CH4 by forest soils were higher than those in the KNO3-N and urea-N treated soils at the same N rate (P≤0.05), but were similar to those of the control. Hence, under experimental conditions, there was a strong inhibitory effect of NO3 rather than NH4 addition on the CH4 and C2H4 consumption in these forest soils. When amount of the added NO3-N increased up to more than 2―3 times the soil initial NO3-N concentrations, both C2H4 and CH4 consumption rates were reduced to 10%―20% of the rates in soils without nitrate addition. By comparing the three forest stands, it was shown that there was a smallest effective concentration of the added nitrate that could inhibit C2H4 and CH4 consumption in the Pinus forest soil, which indicated that C2H4 and CH4 consumption of the soil was more sensitive to NO3-N addition.  相似文献   

4.
寒温带4种森林类型土壤团聚体有机碳氮特征   总被引:1,自引:0,他引:1  
【目的】 大兴安岭是我国唯一的寒温带地区,森林资源丰富,但大兴安岭地区土层较薄,且存在永冻层,对于该地区土壤结构、养分循环存在巨大影响。探讨该地区土壤团聚体的结构组成和有机碳、氮的含量与分布规律,了解不同粒径团聚体对土壤有机碳、氮的固存与保护作用,为深入研究我国寒温带地区土壤结构与碳氮循环提供依据。【方法】 在黑龙江大兴安岭地区,以我国寒温带4种主要森林类型(兴安落叶松林、樟子松林、山杨林、白桦林)为研究对象,测定生长季林地0~5、≥5~10和≥10~20 cm土层粒径<0.053、≥0.053~0.250、≥0.250~0.500、≥0.500~1.000和>1.000 mm水稳性团聚体的分配比例并结合有机碳、氮含量,分析各粒径团聚体有机碳、氮对土壤总有机碳、全氮的贡献率,进行多因素方差分析。【结果】 ①樟子松林、山杨林和白桦林0~10 cm土层和兴安落叶松林0~5 cm土层以大团聚体(粒径≥0.250 mm)为主,占50%以上,随着土层的加深,大团聚体质量分数下降,各个林型生长季中期大团聚体质量分数均高于初期和末期,且阔叶林大团聚体质量分数高于针叶林。②团聚体有机碳含量与全氮含量呈现出大致相同的变化规律,4种森林类型以粒径≥0.500 mm团聚体有机碳、全氮含量较高,大致表现为随粒径的减小含量递减。阔叶林团聚体有机碳、全氮含量比针叶林的高,且阔叶林的在生长季中后期含量相对较高,而兴安落叶松林的呈波动式变化趋势,樟子松林的则以生长季前期含量较高。③4种森林类型0~10 cm土层,团聚体有机碳、全氮以粒径≥0.500 mm团聚体贡献率较高,最高达到90%;随着土层的加深,≥0.250 mm的大团聚体的贡献率下降,≥10~20 cm土层以粒径<0.250 mm的微团聚体贡献率最高。④森林类型、土层和月份对土壤团聚体组成和团聚体有机碳、全氮含量均具有显著影响,且粒径≥0.500 mm团聚体有机碳、全氮含量与对应粒径团聚体含量呈正相关,粒径>1.000 mm团聚体有机碳、全氮含量与该粒径团聚体含量呈极显著正相关。【结论】 森林类型、土层和月份的变化均对土壤团聚体组成及其结合的有机碳、全氮含量产生影响,阔叶林大团聚体含量以及团聚体结合的有机碳氮含量均高于针叶林。4种森林类型以生长季中期大团聚体含量更高,阔叶林团聚体有机碳、全氮含量在生长季中后期较高,针叶林则在生长季内呈波动式变化趋势。随着土层的加深,大团聚体含量、团聚体有机碳、全氮含量以及大团聚体贡献率均逐渐降低。本研究区粒径≥0.500~1.000 m和>1.000 mm团聚体是有机碳和全氮的主要载体。由此可见,寒温带4种森林类型团聚体组成及其结合的有机碳、全氮特征各异,在一定程度上反映了寒温带主要森林类型下的土壤结构与碳氮固存特征。  相似文献   

5.
We studied in the laboratory the effects of acetylene (C2H2) concentrations on the accumulation and consumption of ethylene and methane in a temperate pine forest soil, and in situ ethylene and methane production and flush effects of nitrogen sources on both productions in the pine forest stand (Pinus sylvestris L.). The addition of C2H2 at concentrations more than 50 Pa C2H2 in the headspace caused a more than 95% reduction in rates of ethylene and methane consumption in forest soil compared to those with no C2H2. Furthermore, addition of acetylene within a range of 50 to 10, 000 Pa C2H2 induced a similar rate of methane accumulation in forest soil. Hence, it can be concluded that presence of more than 50 Pa C2H2 in the headspace is an effective method to measure methane production in forest soil. The addition of C2H2 at concentrations more than 50 Pa C2H2 induced an increasing concentration of ethylene in the headspace (P≤0.05), indicating the reduction of acetylene to ethylene in forest soil. Using inhibition of 0.5 kPa C2H2 in combination with 5 kPa carbon monoxide that inhibits the reduction of acetylene in a short term, it was observed that there was a larger in situ methane production rate (218±26 μg C m^-2 h^-1(μg C per square meter per hour, the same below)) than in situ ethylene production rate (92±6 μg C m^-2 h^-1) in the pine forest soil. The addition of nitrogen sources such as urea, urea plus a nitrification inhibitor dicyandiamide, and potassium nitrate, could induce a 5-fold greater increase in rates of in situ ethylene and methane production compared to those in the control, particularly in the latter (P≤0.05). The results can promote in situ measurement of ethylene and methane production in forest soils at different sites.  相似文献   

6.
With wax content of 1.62%, heavy oil has been produced from the sandstone reservoirs of Neogene Guantao Formation (Ng1). In the GC and GC-MS RIC profiles of its aliphatic fraction, n-alkanes are totally lost, which shows the result of heavy biodegradedation. However, the remaining trace C13-C36 n-alkanes can be still seen from its m/z 85 mass chromatogram. In addition, a complete series of C35-C73 high molecular weight (HMW) n-alkanes was detected by high-temperature gas chromatography (HTGC). The HMW n-alkane series shows a normal distribution pattern, a major peak at nC43, obvious odd-carbon-number predominance, CPI37—55 and OEP45—49 values up to 1.17 and 1.16—1.20 respectively. The present study not only has conformed the strong resistibility of HMW n-alkanes to biodegradation in crude oils as concluded by previous researchers, but also has provided some significant information on source input and maturity for the heavily biodegraded oil in the Qianmiqiao region.  相似文献   

7.
为探明广西马尾松Pinus massoniana人工林土壤碳(C)、氮(N)、磷(P)化学计量特征,揭示马尾松人工林土壤养分平衡机理及其时空动态变化,为马尾松人工林可持续经营提供理论依据,研究以广西4个典型区域马尾松人工林为对象,采用空间代替时间的方法,比较不同区域各林龄土壤有机碳(SOC)、全氮(TN)和全磷(TP)...  相似文献   

8.
The last glacial period is characterized by a cold and dry climate with low atmospheric CO2 concentration. The relatively arid climate and low CO2 concentration are favorable to the growth of C4 plants, but the low temperature limits the development of th…  相似文献   

9.
Change in temperature affects the activity of soil microorganisms.However,there is limited knowledge about temperature effects on ethylene(C2H4) and methane(CH4) production from forest soils.Topsoil samples(0―5 cm) collected from different temperate forest stands(e.g.,Pinus sylvestris L.,Cryptomeria japonica,and Quercus serrata) were used to compare C2H4 and CH4 production from soils at temperature from 5 to 35℃ under oxic and anoxic conditions.The rates of C2H4 and CH4 production from soils under oxic cond...  相似文献   

10.
运用地统计学、GIS和传统统计方法,分析松嫩平原西部吉林省通榆县农田表层土壤有机质和全氮的空间分布,并探讨高程、坡度、土壤类型和人工施肥量等因素对土壤有机质和全氮空间分布的影响.研究结果表明:1)吉林省通榆县农田表层土壤有机质含量西部高,东北和西北部低,而全氮含量为北部高,西南部低;2)不同海拔高度上的土壤有机质和全氮含量变化差异并不显著;3)土壤有机质和全氮含量随着坡度的增大,急剧减少;4)淡黑钙土、栗钙土和草甸土的有机质和全氮含量明显高于风沙土和沼泽土;5)通榆县各乡镇人工施肥量与土壤有机质和全氮空间变异的相关性并不强,说明影响本县土壤有机质和全氮含量的因素以自然环境因素为主.  相似文献   

11.
The basic characteristics, X-ray analysis and micromorphology of soil developed from the parent ruified soil had been probed, results showed that there were similarities among different types of the rubified soils. The soil clay (D<0.002 mm) contents (C c ) were relative higher as between 29.16% and 80.03%. In addition, organic matter contents were lower as between 2.2–6.6 g/kg. The clay minerals in the rubified soils had high content of 2:1 type swelling minerals, e.g., smectite and vermiculite, which were the basic causes of formation of soil cracks and crevices. Soil micromorphology characteristics showed that microcosmic crevices universally distributed within the tight and compact soil microstructure were the microcosmic characteristics of crevices formation. The soil cracks and crevices changed the erosion process. Obviously, well developed soil crevice carries a significant connection with strong soil erosion in Yuanmou, Yunnan province, China. The term “soil crevice erosion” was coincided with the viewpoint put forward that soil crevice erosion played a dominant role in regional and violent soil erosion in this area. Foundation item: Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-409) and the National Key Technology R&D Program of China (2006BAC01A11)  相似文献   

12.
The amount and biodegradability of dissolved organic carbon (DOC) in forest floors can contribute to carbon sequestration in soils and the release of CO 2-C from soil to the atmosphere.There is only limited knowledge about the biodegradation of DOC in soil extracts and leachates due to the limitations inherent in degradation experiments.Differences in the biodegradation of DOC were studied in forest soil extracts using cold and hot water and 4 mmol/L CaCl 2 solution and in soil leachates sampled under different conditions over a wide range of DOC concentrations.From these results,we developed a simple and rapid method for determining the biodegradable organic C in forest floors.The hot water extracts and CaCl 2 extracts after CH 3 Cl fumigation contained higher concentrations of biodegradable organic C than the cold water extracts and CaCl 2 extracts before fumigation,with rapid DOC degradation occurring 24-48 h after incubation with an inoculum,followed by slow DOC degradation till 120-168 h into the incubation.During a 7-d incubation with an inoculum,the variation in DOC degradation in the different soil extracts was consistent with the change in special UV absorbance at 254 nm.Relatively higher levels of biodegradable organic C were detected in soil leachates from the forest canopy than in forest gaps between April and October 2008 (P <0.05).Relatively lower concentrations of DOC and biodegradable organic C were observed in soil leachates from N-fertilized plots during the growing season compared with the control,with the exception of the plot treated with KNO 3 at a rate of 45 kg N ha 1 a 1.Around 77.4% to 96.3% of the variability in the biodegradable organic C concentrations in the forest floors could be accounted for by the initial DOC concentration and UV absorbance at 254 nm.Compared with the conventional inoculum incubation method,the method of analyzing UV absorbance at 254 nm is less time consuming and requires a much smaller sample volume.The results suggest that the regression models obtained using the initial DOC concentration and UV absorbance can provide a rapid,simple and reliable method for determining the biodegradable organic C content,especially in field studies involving relatively large numbers of samples.  相似文献   

13.
【目的】为探讨北黄海獐子岛附近海域氮、磷的来源及其污染风险状况,对该海域表层沉积物中氮、磷的形态和分布特征进行分析。【方法】采用K2S2O8氧化法和HCl浸取法对獐子岛附近海域13个站位的表层沉积物中总氮(TN)、总磷(TP)及其无机和有机态的含量进行分析,并采用单因子标准指数法对氮、磷的污染水平进行评价。【结果】獐子岛附近海域沉积物中TN和TP的含量分别为0.192~1.357 mg/g和0.302~0.489mg/g,有机氮(ON)和无机磷(IP)是表层沉积物中氮和磷的主要存在形式,分别占TN与TP的90.93%和82.84%。沉积物中TN和TP在研究区域南部含量较高,这与沉积物粒度密切相关;而ON、有机磷(OP)两者都与有机碳(TOC)含量具有显著相关性,说明它们具有相似的来源。单因子标准指数法分析表明獐子岛附近海域沉积物中TP含量较低,标准指数均小于1;而TN含量相对较高,其标准指数为0.35~2.47。【结论】獐子岛附近海域沉积物中氮为陆源和自生混合来源,而磷主要是陆源输入;海域沉积物环境受到氮的污染。  相似文献   

14.
Asian dust storms originating from the arid regions of central and eastern Asia and from the Loess Plateau in China frequently occur in spring [1,2]. Driven by the East Asian monsoon, Asian dust can be transported to northern Pacific Ocean[2―8]. Asian du…  相似文献   

15.
The carbon isotopic compositions of soil organic matter (SOM) and total carbonate (TC) in Xifeng Ioess-paleosol sequence have been studied. The δ^13CsoM values vary from -23.8‰ to -20.2‰, which are higher in interglacial than in glacial stages. Contrary to δ^13Csoi values, the δ^13CTc values vary from -8.5‰ to -3.6‰ and are lower in interglacial than in glacial stages. The differences (△δ^13C) between the δ^13CsoM and δ^13CTc values vary from 14.1‰ to 19.4‰. Our results from the Xifeng loesspaleosol sequence indicate that the △δ^13C values represent the ratio of primary carbonate (PC) to secondary carbonate (SC). The △δ^13C values were high in the loess stages, and the maximal PC-to-SC ratio can reach 6:4. But in the paleosol stages, the △δ^13C values were low, with a small proportion of PC. The △δ^13C values in Ioess-paleosol sequence also indicate the contributions of the dust to the loess sediment in the Chinese Loess Plateau because the dust contains the PC.  相似文献   

16.
Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measuring method for water stability of soil structure and conduct the comparative study on the quality of the soil structure. The results indicated that (1) The water stability dynamic characteristic of the soil structure could well reflect the maintaining capability of the soil structure as time goes on. (2) The quality of several soil structures in southwest China was sequenced as follows: Stagnic Anthrosols 〉 Ustic Vertisols 〉 Ustic Ferrosols. (3) The water stability of soil structure is very positively correlated with the capillary porosity and the clay particle (D 〈 0.002 mm) content (Co), but is very negatively correlated with the silt (D is 0.05-0.002 ram) content (Csc), and (4) The dynamic functional equation of the water stability of soil structure in southwest China was established, so that the water stability characteristics of various soil structures could be quantitatively expressed and the quality of different soil structures can be quantitatively compared from each other.  相似文献   

17.
A group of constructed wetlands (CWs) were applied to the recirculating aquaculture system. This study assessed the performance of CWs in treating the aquaculture wastewater, examined the water quality condition of aquaculture ponds and the growth and the survival rate of "target" species (Ictalurus punctatus and Megalobrama amblycephala). The results showed that CWs were effective on reducing the concentrations of 5-day biochemical oxygen demand (BOD5, at 70.5%), total suspended solids (TSS, at 81.9%), chlorophyll a (Chl-a, at 91.9%), ammonium (NH4^+, at 61.5%) and nitrate nitrogen (NOa-N, at 68.0%). Effect of CWs on phosphate (PO43 -P) removal was relatively lower (at 20.0%). The concentrations of BODs, TSS, Chl-a, NH4^+ and TN, TP in the recirculating culture pond were significantly lower than that in the control pond( p〈0.05 ). CWs could help to increase total yield, survival rate of the "target" species and significantly decrease feed conversion ratio ( p〈0.05 ).  相似文献   

18.
By combination of DC reactive magnetron sputtering with multiple arcplating, the alternating C3N4/TiN compound film is deposited onto HSS. The core level binding energy and the contents of carbon and nitrogen are characterized by X-ray photoelectron spectrum. X-ray diffraction (XRD) shows that compound thin film contains hard crystalline phases of α-C3N4 and β-C3N4. The Knoop microhardness in the load range of 50, 5–54, 1 GPa is measured. According to acoustic emission scratch test, the critical load values for the coatings on HSS substrates are in the range of 40–80 N. The metal coated with C3N4/TiN compound films has a great improvement in the resistance against corrosion. Many tests show that such a coating has a very high wearability. Compared with the uncoated and TiN coated tools, the C3N4/TiN coated tools have a much longer cutting life. Foundation item: Supported by the National Natural Science Foundation of China (19875037) Biography: Wu Da-we( (1941-), male, Professor, research direction; thin film and its application.  相似文献   

19.
Surface soil samples collected over a high spatial resolution in eastern China were analyzed for carbon isotope composition (δ^13C) of total organic carbon (TOC) and higher plant-derived long-chain n-alkanes, with the latter reported as weighted mean values. The two sets of δ^13C values are significantly correlated and show similar trends in spatial variation. The spatial distribution of δ^13C shows less negative values in the mid-latitudes between 31°N and 40°N and more negative ones at higher and lower latitudes. This is consistent with previously reported carbon isotope data from surface soil phytoliths in the same region and suggests that the mid-latitude area provides relatively favorable growing condi- tions for C4 plants. Furthermore, δ^13C values of both TOC and long-chain n-alkanes from 12 surface soil samples collected from a small grassland in north China displayed similar carbon isotope values and the difference between paired δ^13C of a soil samples remains relatively constant. Our data demonstrate that in eastern China, soil δ^13C composition of both TOC and long-chain n-alkanes is effective indicators of C3/C4 ratios of the prevailing vegetation. This work suggests that -22‰ and -32‰ are good es- timated end members for the weighted mean δ^13C values of long-chain n-alkanes (C27, C29 and C31 n-alkanes) from soils under dominant C4 or C3 vegetation, allowing us to reconstruct paleovegetation trends.  相似文献   

20.
Temperate forest surface soils at the varying distances from main trunks (e.g., Pinus koraiensis and Quercus mongolica) were used to study the effects of acetylene (C2H2) at low concentrations on nitrification, mineralization and microbial biomass N concentrations of the soils, and to assess the contribution of heterotrophic nitrification to nitrous oxide (N2O) emissions from soils. The use of acetylene at partial pressures within a range from 10 to 100 Pa C2H2 in headspace gas gave a significant decrease in N2O emission at soil moisture of c. 45% water-filled porosity space, and the decrease was almost the same in each soil after exposure of C2H2 at low concentrations. Heterotrophic nitrification could account for 21%―48% of total N2O emission from each soil; the contribution would increase with increasing distances from the Pinus koraiensis trunks rather than from the Quercus mongolica trunks. Under the experimental conditions, the use of C2H2 at low concentrations showed no significant influence on soil microbial biomass N, net N mineralization and microbial respiration. However, 100 Pa C2H2 in headspace gas could reduce carbon dioxide (CO2) emissions from soils. According to the rapid consumption of 10 Pa C2H2 by forest soils and convenience for laboratory incubations, 50 Pa C2H2 in headspace gas can be used to study the origin of N2O emissions from forest soils under aerobic conditions and the key associated driving mechanisms. The N2O and CO2 emissions from the soils at the same distances from the Quercus mongolica trunks were larger than those from the Pinus koraiensis trunks, and both emissions decreased as the distances from trunks increased. The stepwise regression analysis showed that 95% of the variability in soil CO2 emissions could be accounted for by the concentrations of soil total C and water soluble organic C and soil pH, and that 72% of the variability in soil N2O emissions could be accounted for by the concentrations of soil total N, exchangeable NH+4-N and microbial biomass N and 25% of the variability in heterotrophic nitrification by the soil microbial biomass N concentration. The emissions of N2O and CO2 from forest soils after exposure of C2H2 at low concentrations were positively related to the net nitrification of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号