首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 611 毫秒
1.
将量子的双波理论应用于具有随时间变化的电容和电感的含时介观LC电路,给出了单一含时LC电路中电荷和磁通量(电流)的平均值和量子涨落,电荷和磁通量的平均值满足电路经典的运动方程。在对电路的初始相位进行统计平均后,各量的平均值以及量子涨落回到标准量子力学的结果。这些结果表明,双波理论能够描述单一的含时介观电路。  相似文献   

2.
从RLC并联电路的经典运动方程出发,研究了介观含源RLC并联电路在压缩Fock态中磁通量和电荷的量子涨落。着重讨论了阻尼对量子涨落的影响。  相似文献   

3.
研究了介观电感耦合电路中压缩态的产生及涨落压缩问题,如果电路参数电容和电感随时间变化,则有源电感耦合电路的本征态是压缩平移Fock态,当电路的频率不变时,电感增加,电荷的量子涨落有压缩,而电流的量子涨落无压缩,电感减小,电流的量子涨落有压缩,电荷的量子涨落无压缩,耦合电感有助于减小电流的量子涨落,温度上升使量子涨落增加,利用电容和电感的时间演化能够降低温度引起的热噪声。  相似文献   

4.
分回路中有电阻时电感耦合电路的量子涨落   总被引:2,自引:0,他引:2  
根据电阻产生的物理机制,即电子与声子的相互作用对两分回路中均有电阻的电感耦合电路进行了量子化,给出了分回路及耦合部分的量子涨落和电路中的参数与环境温度的关系.电感耦合可以降低电流的量子涨落,但是使电荷的电子涨落增大.与无耗散的电路类似,电源影响电荷和电流的大小,但不影响电荷和电流的电子涨落.以往从电荷的经典运动方程出发,通过变量代换的正则量子化方法,相当于将这里高温极限的结果应用到了低温情况.  相似文献   

5.
介观含源RLC并联电路的量子涨落   总被引:3,自引:1,他引:3  
由于耗散的存在,介观RLC并联电路中的磁通量和电荷不是一对线性厄米算符,因此,构造了一对正则变量,并用该对正则变量作为算符实现了介观RLC并联电路的量子化,在外源作用下,介观RLC并联电路系统由初始本征态将演化到平称Fock态,在平移Fock态中,计算了磁通量和电荷的量子涨落。  相似文献   

6.
基于电荷量子化的事实,运用最小平移算符的性质等,计算介观LC电路中电荷、电流以及能量的量子涨落,研究影响量子涨落的因素.结果表明,计及电荷具有不连续性的事实,在Fock态下介观LC电路中电流与能量的量子涨落不为零,分别与电荷量子、Planck常数等有关,大小决定于电路参数.  相似文献   

7.
首先利用信息测量理论中的Wehrl熵,给出热场中谐振子系统的Wehrl熵,然后将介观RLC电路等效成热谐振子,研究介观RLC电路在热真空态下量子效应和Wehrl熵之间的关系.结果表明,Wehrl熵不仅和谐振子的本征频率有关,而且与热场温度有关;并且电路中的电荷和自感磁通量的量子涨落及相应不确定关系随着Wehrl熵增加而增加,从而Wehrl熵可以表征介观RLC电路中的量子涨落及相应不确定关系,是介观电路量子效应的最好度量.  相似文献   

8.
为了研究介观电路在有限温度下的量子效应,将Wehrl熵应用于介观电路系统中.首先,由量子正则系综理论得到了热场中一维谐振子的密度矩阵,进而计算出的Wehrl熵不仅与谐振子的本征频率有关,而且还随热场的温度单调递增.其次,将介观RLC串联电路等效成热场中的一维谐振子,利用Wehrl熵研究介观RLC串联电路在能量混合态下的量子效应,得出了电路中电荷和自感磁通量的量子涨落及相应不确定关系都随着Wehrl熵单调递增,从而也就随温度单调递增.结论与目前采用热场动力学理论方法所得结果相一致.所以,Wehrl熵可以作为介观电路中的量子涨落和相应不确定关系的度量.  相似文献   

9.
介观电感耦合电路中电荷和电流的量子涨落   总被引:1,自引:0,他引:1  
对一个无耗散且每个回路都有电源的电感耦合电路的经典Hamilton量进行了量子化,计算求解出了该Hamilton量子在电源为绝热近似时的本征态,研究了这种耦合电路在这一本征态下电荷、电流的量子涨落状况。研究结果表明,这种电感耦合的两个回路中的量子噪声是相互关联的。  相似文献   

10.
介观含源耦合电路中的量子力学效应   总被引:8,自引:0,他引:8  
通过对无耗耦合含源介观电路的量子化和体系哈密顿量的对角化,计算了压缩真空态下和含源电路基态下电荷、电流的量子涨落。结果表明,介观耦合电路中存在量子力学效应,每一回路的量子涨落除决定于回跟自身参量外,还决定于另一回路的电学参量,即两回路中的量子涨落是相互关联的;此外,量子涨落与电路所处的状态密切相关。  相似文献   

11.
在热压缩态下介观电容耦合电路中的量子涨落   总被引:1,自引:0,他引:1  
利用热场动力学(TFD)方法研究了有限温度下介观电路中的噪声或涨落压缩问题,分析了对信息交换起重要作用的电路耦合部分的情况,当电路处于热压缩态时,选取不同的参数,电荷和电流的涨落分别可以得到压缩,电容耦合对分回路以及耦合区域的电荷涨落压缩有增强效应,但是对于电流则没有这样的效果。  相似文献   

12.
在对真空中介观电容耦合电路进行量子化的基础上,采用Lewis-Riesenfeld不变量理论及时间独立的哈密顿系统的知识对在热态下的电感耦合的介观电路中的量子涨落进行研究,并将结果与在绝对零度情况下进行比较.结果表明热态下介观耦合电路中的量子涨落与组成元件的参数和温度有关;并且电路系统在一定温度下的不确定关系比在绝对零度下更为明显,温度越高、涨落越明显.  相似文献   

13.
对于电容耦合电路的不同实际状态 ,研究了完全由耦合引起的量子涨落减小问题 .如果耦合电路处于基态 ,或者开始时耦合电路解耦 ,那么分回路以及耦合部分的电荷量子涨落能够降低 ,而电流的量子涨落却不能 .如果初始时 ,耦合部分是断开的 ,那么分回路中电流的涨落不能被压缩 ,而耦合部分电流的涨落以及各处电荷的涨落都会得到减小  相似文献   

14.
对于电感耦合电路 ,讨论了一种实际的状态演化情况。当电路参数即电容和电感按照一定规律变化时 ,压缩可以产生。同时特别关注了以往未加深入研究的耦合部分的量子涨落。当电路的参数不随时间变化时 ,也可以有压缩产生。这种压缩完全是由耦合引起的。  相似文献   

15.
半导体量子点电调制吸收谱一次微分性质的理论分析   总被引:1,自引:1,他引:0  
分析在电场作用下半导体量子点的介电响应函数,在弱场近似下得到半导体量子点的电调制吸收谱的一次微分性质。由于量子点的量子约束效应,半导体中的电子能带不复存在,成为一系列离散的能级;通常体材料中的电场调制机制不存在了,在电场作用下,量子点中的量子能级会随电场而改变;激子吸收峰红移,因此电场直接影响到介电函数中的激子能级,使激子能级产生与电场强度有关而与时间无关的移动。这样半导体量子点电调制吸收谱成为一  相似文献   

16.
Sachdev S  Starykh OA 《Nature》2000,405(6784):322-325
In many two-dimensional superconducting systems, such as Josephson-junction arrays, granular superconducting films, and the high-temperature superconductors, it appears that the electrons bind into Cooper pairs below a pairing temperature (T(P)) that is well above the Kosterlitz-Thouless temperature (T(KT)) the temperature below which there is long-range superconducting order). The electron dynamics at temperatures between T(KT) and T(P) involve a complex interplay of thermal and quantum fluctuations, for which no quantitative theory exists. Here we report numerical results for this region, by exploiting its proximity to a T = 0 superconductor-insulator quantum phase transition. This quantum critical point need not be experimentally accessible for our results to apply. We characterize the static, thermodynamic properties by a single dimensionless parameter, gamma(T). Quantitative and universal results are obtained for the frequency dependence of the conductivity, which are dependent only upon gamma(T) and fundamental constants of nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号