首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 494 毫秒
1.
纳米铂粒子(PtNPs)具有良好的生物相容性及高的催化性能,利用恒电位法将DNA生物分子电沉积在PtNPs修饰电极表面,得到一纳米结构的导电薄膜,极大地增大了电极的比表面积,结合Nafion的高选择性,制备了一种新型的Nafion/DNA/PtNPs复合膜修饰电极,研究了多巴胺(DA)在该修饰电极上的电化学行为,利用示差脉冲伏安法(DPV)对DA进行了定量分析.结果证明,该复合膜修饰电极大大提高了DA的电化学响应,在0.1 mol/L pH 7.0磷酸盐缓冲溶液(PBS)中,DA的示差脉冲伏安峰电流与其浓度在0.01~0.1μmol/L和0.1~6.0μmol/L两个范围内呈良好的线性关系,检出限可达3.3 nmol/L.此外,该修饰电极可以经受较高浓度抗坏血酸(AA)和尿酸(UA)的干扰,用于盐酸多巴胺注射液中DA含量的测定,结果满意.  相似文献   

2.
采用电沉积法制备了Nation修饰碳纤维纳米电极,利用扫描电子显微镜(SEM)表征了该修饰电极的表面形貌,采用差示脉冲伏安法(DPV)研究了多巴胺和抗坏血酸在该修饰电极上的电化学行为.结果表明:多巴胺和抗坏血酸在裸碳纤维电极上均能发生电化学反应,两氧化峰重叠.修饰电极对带负电的抗坏血酸有良好的屏蔽作用,可在1.0mmol/L高浓度抗坏血酸的共存下选择性测定多巴胺,峰电流与多巴胺浓度在1.0×10-7~1.0×10-4mol/L之间呈现良好的线性关系,检出限为1.0×10-8mol/L.该法有望用于检测活体中多巴胺浓度.  相似文献   

3.
采用电沉积法将氧化石墨烯修饰到已被五羟色胺(5-HT)毒化的碳纤维电极表面制得再生碳纤维电极,用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)在该再生电极上的电化学行为,并优化了氧化石墨烯的电沉积时间及电压.结果表明:在20 mmol/L,p H为7.2的Tris-HCl缓冲溶液中,该再生电极对多巴胺、去甲肾上腺素具有良好的电化学响应.在优化条件下,利用DPV测定,DA的氧化峰电流与其在0.1~100μmol/L呈良好的线性关系,检测下限达0.1μmol/L.  相似文献   

4.
采用电沉积法制备了Nafion修饰碳纤维纳米电极,利用扫描电子显微镜(SEM)表征了该修饰电极的表面形貌,采用差示脉冲伏安法(DPV)研究了多巴胺和抗坏血酸在该修饰电极上的电化学行为.结果表明:多巴胺和抗坏血酸在裸碳纤维电极上均能发生电化学反应,两氧化峰重叠.修饰电极对带负电的抗坏血酸有良好的屏蔽作用,可在1.0mmol/L高浓度抗坏血酸的共存下选择性测定多巴胺,峰电流与多巴胺浓度在1.0×10-7~1.0×10-4mol/L之间呈现良好的线性关系,检出限为1.0×10-8mol/L.该法有望用于检测活体中多巴胺浓度.  相似文献   

5.
利用滴涂法制备了二茂铁/β-环糊精/单壁碳纳米管修饰玻碳电极,并对其进行了表征.该修饰电极对尿酸(UA)具有良好的电化学催化特性.采用示差脉冲伏安法(DPV)测得UA的氧化峰电流与其浓度在5.2×10-7-6.0×10-4mol/L范围内成线性关系,回归方程为ipa(μA)=13.19 0.311C(μA),相关系数为0.9973,检测限为5.2×10-7mol/L(信噪比为3).尿酸和抗坏血酸(AA)在修饰电极上于不同的电位被氧化,可用于抗坏血酸存在下选择性测定尿酸.  相似文献   

6.
以水热法制备了聚苯胺/还原氧化石墨烯复合材料,将其超声分散于乙醇溶液中,滴涂在聚对氨基苯磺酸修饰玻碳电极表面,得到聚苯胺/还原氧化石墨烯/聚对氨基苯磺酸修饰玻碳电极.采用循环伏安法考察了5-羟色胺(5-HT)在修饰电极上的电化学行为.实验结果表明该电极对5-HT的氧化反应过程表现出良好的催化活性.最佳条件下,氧化峰电流与5-HT的浓度在0.10~100.0μmol/L范围呈良好线性关系,其线性方程为I_p(μA)=-0.0419C(μmol/L)-0.4171(R=0.996),检出限为0.032μmol/L.当抗坏血酸和多巴胺的浓度增大到5-HT的50倍时,5-HT峰电流几乎不受影响,表明该修饰电极对5-HT检测具有良好的选择性.  相似文献   

7.
采用循环伏安法制备了聚L-组氨酸/石墨烯复合膜修饰电极(poly-(L-His)/ERGO/GCE),研究了抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)在该修饰电极上的电化学性质.研究结果表明:AA、DA和UA在该修饰电极上具有良好的电化学响应,且这3种物质的氧化峰能完全分离.据此建立了在大量AA存在下同时测定DA和UA的新方法,微分脉冲伏安法测定DA和UA的线性范围分别为3.0×10-7~3.0×10-5 mol·L-1和5.0×10-7~3.0×10-5 mol·L-1,检出限分别为3.0×10-7和5.0×10-7 mol·L-1.  相似文献   

8.
通过一步水热法合成氧化锌(ZnO)/石墨烯量子点(GQDs)纳米复合材料,透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和紫外-可见分光光度计(UV-vis)对合成的纳米材料进行表征.将所制备的纳米材料应用于修饰电极,通过循环伏安法和示差脉冲伏安法探究多巴胺在该材料电极的电化学行为,实验结果显示:与氧化锌和石墨烯量子点的单一材料相比,ZnO/GQDs纳米复合材料修饰的电极对检测多巴胺的氧化还原能力更强,并在0. 3~100μmol/L浓度范围内呈良好的线性关系,检出限为0. 19μmol/L(S/N=3).此外,该生物传感器测定实际样品中多巴胺的结果令人满意.  相似文献   

9.
采用滴涂法和电聚合法制备聚对氨基苯甲酸/TiO2-石墨烯修饰玻碳电极.用循环伏安法和差分脉冲伏安法研究扑热息痛和色氨酸在修饰电极上的电化学行为,据此建立一种扑热息痛和色氨酸同时测定的电化学方法.实验结果表明,该修饰电极对于扑热息痛和色氨酸的电化学反应具有良好的催化性能.利用差分脉冲伏安法测定,扑热息痛和色氨酸在1.0~530μmol/L浓度范围内与氧化峰电流呈良好的线性关系,相关系数分别为0.990和0.993.信噪比为3时,扑热息痛和色氨酸检出限分别为0.4μmol/L和0.1μmol/L.将该方法用于实际样品分析,回收率为95.2%~105.8%.  相似文献   

10.
采用电沉积方法将氧化石墨烯修饰到碳纤维电极表面,氧化石墨烯被还原从而制备石墨烯修饰的碳纤维微电极,考察多巴胺(DA)、尿酸(UA)、去甲肾上腺素(NE)以及铁氰化钾在修饰前后电极上的电化学行为.结果表明,在20 mmol/L pH值为7.4的Tris-HCl缓冲液中,氧化石墨烯经电沉积法得到的石墨烯修饰电极具有良好的稳定性和重现性,该修饰电极显著地提高了多巴胺和去甲肾上腺素的电化学响应,对DA和NE具有良好的电催化作用,在修饰电极上去甲肾上腺素和多巴胺的氧化过程受扩散控制.采用差示脉冲伏安法对NE和DA氧化峰电流与浓度的关系进行定量分析,DA氧化峰电流与浓度在1.0×10-7 ~ 1.0×10-4 mol/L范围内呈现良好的线性关系,线性回归方程为Ip=1×10-4 C+5×10-10,相关系数r=0.9906;NE氧化峰电流与浓度在1.0×10-7 ~ 1.0×10-4 mol/L范围内呈现良好的线性关系,线性回归方程为Ip=2×10-5C+7×10-11,r=0.9920.  相似文献   

11.
制备并表征了空壳钯纳米粒子,将空壳钯纳米粒子和金纳米粒子修饰在玻碳电极(GC)表面,构建了新型的过氧化氢无酶传感器.通过循环伏安等电化学方法研究了修饰电极的电化学特性,结果表明:Pd/AuNPs/GC对过氧化氢(H2O2)的电极反应具有催化作用,空壳钯和纳米金在催化过氧化氢还原过程中表现出了良好的协同作用.过氧化氢的浓度在2216μmol/L(R=0.9993)范围内,与修饰电极的电流之间呈现出良好的线性关系,检测限为0.2μmol/L(S/N=3).该传感器具有较好的稳定性、重现性、抗干扰性.  相似文献   

12.
利用电化学方法研究了2,3-二巯基乙二酸(DMSA)自组装膜的电化学行为,发现DMSA自组装膜对于多巴胺和尿酸的氧化能够起到明显的电催化作用.在优化条件下,多巴胺与尿酸的氧化峰电流分别与其浓度在1.0×10-4~1.0×10-3和8.0×10-4~9.0×10-3 mol/L内呈良好的线性关系,检出限分别为3.0 ×10-5和8.0×10-5 mol/L.该电极用于实际样品的测定,结果满意.  相似文献   

13.
以L-半胱氨酸作为电极修饰剂,采用循环伏安法研究L-Cys/GC电极的制备和DA在该修饰电极的电化学行为及其测定.DA在pH=6.684的磷酸盐缓冲溶液中,在L-Cys/GC电极上产生一对灵敏的氧化还原峰,峰电位分别为Epa=0.180 V和Epc=0.125 V(vs.SCE).同时用伏安法测定DA的线性范围为1×1...  相似文献   

14.
以L-半胱氨酸作为电极修饰剂,采用循环伏安法研究L-Cys/GC电极的制备和DA在该修饰电极的电化学行为及其测定.DA在pH=6.684的磷酸盐缓冲溶液中,在L-Cys/GC电极上产生一对灵敏的氧化还原峰,峰电位分别为Epa=0.180 V和Epc=0.125 V(vs.SCE).同时用伏安法测定DA的线性范围为1×10-3~1.0×10-6 mol/L,检出限可低达1.0×10-7mol/L(S/N=3).对1×10-4 mol/L DA平行测定50次,其相对标准偏差约为2.5%.该电极可望进一步发展为微电极,用于生物活体内的神经递质DA的实际检测.  相似文献   

15.
银掺杂聚L-苏氨酸修饰电极的制备及对多巴胺的测定   总被引:1,自引:1,他引:0  
利用循环伏安法,研究了银和L-苏氨酸在玻碳电极表面电化学聚合的条件,制备了银掺杂聚L-苏氨酸修饰电极。并研究了多巴胺在修饰电极上的电化学行为,建立了测定多巴胺的新方法。在pH=6.5磷酸盐缓冲溶液中,扫描速率为20mV/s,多巴胺在修饰电极上产生一对明显的氧化还原峰,峰电位分别为Epa=0.218V,Epc=0.189V。用示差脉冲伏安法测定时,峰电流与多巴胺浓度分别在8.00×10-7~1.00×10-5和1.00×10-5~1.00×10-4mol/L范围内呈良好的线性关系,检出限为1.0×10-7mol/L。用于药物中多巴胺的测定,结果满意。  相似文献   

16.
以蜡烛灰为原料,利用经济和绿色的合成方法制备出碳量子点纳米材料,并通过扫描电子显微镜来进行表征.利用碳量子点修饰碳玻电极制备电化学传感器,并通过循环伏安法和微分脉冲伏安法对传感器的电化学行为进行考察.结果表明,该传感器对多巴胺检测的线性检测范围为0.1~100μmol/L,检出限为0.02μmol/L(S/N=3).  相似文献   

17.
利用自组装膜技术,将离子液体和半胱氨酸修饰到金电极上,制备离子液体/半胱氨酸自组装膜修饰电极,以循环伏安法和交流阻抗法研究其电化学性质,并用于抗坏血酸(AA)的电催化氧化。结果显示:当AA的浓度在1×10-6~8×10-4mol/L范围内时,与所测得的氧化峰电流呈良好的线性关系,检出限为8.6×10-7mol/L。催化效果明显,可实现对AA的电化学检测。  相似文献   

18.
采用电聚合方法在玻碳电极上制备了Keggin型磷钨酸-多壁碳纳米管-聚吡咯(PW12-MWCNT-PPy)复合物膜修饰电极,并探讨了该电极对NO2-的电催化还原和电化学行为。实验结果表明,该电极对NO2-响应速度快,检测灵敏度高。NO2-在2.1μmol.L-1~1.3 mmol.L-1浓度范围内,与修饰电极上的稳态安培响应电流呈线性关系,检测限为0.62μmol.L-1(S/N=3).该修饰电极用于腌菜中亚硝酸根离子的测定,回收率在95%~99%之间。  相似文献   

19.
制备了一种碳纳米管/壳聚糖复合膜修饰的玻碳电极,并通过循环伏安法和计时库仑法详细研究了尿酸在复合膜修饰电极上的电化学行为.对诸如支持电解质,溶液pH,富集时间等实验条件进行了优化,结果表明,在pH=3.95 0.1 mol/L柠檬酸钠盐支持电解质中,尿酸在复合膜修饰电极上具有良好的电化学响应.相对于裸玻碳电极,尿酸的氧化峰电位负移20 mV,峰电流显著提高,锋形更为尖锐,表明复合膜对尿酸的电化学氧化具有一定的催化作用,计时库仑法结果表明尿酸在复合膜修饰电极上为两电子两质子的电子转移过程.尿酸的氧化峰电流与其浓度分别在5.0×10-9~5.0×10-7 mol/L范围内和1.5×10-6~1.0×10-4 mol/L范围内呈良好的线性关系,线性相关系数分别是0.994 7和0.988 4.开路富集120 s后,检出限为5.0×10-9 mol/L.将该复合膜修饰电极应用于人体实际尿样中尿酸的测量,结果令人满意.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号