首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
通过共沉淀-高温固相法合成Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)固溶体正极材料,并通过溶液法对其进行LiAlO2包覆。采用X线衍射(XRD)、扫描电镜(SEM)、透视电镜(TEM)、电化学交流阻抗谱(EIS)和恒电流充放电测试分析样品的结构、形貌及电化学性能。研究结果表明:包覆前后样品都具备α-NaFeO2型层状结构;包覆后,Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)的循环稳定性和倍率性能都得到显著提高。包覆量为5%(质量分数)的样品性能最优。首次放电比容量为254.64mA·h/g。50次循环后,容量保持率由84.5%提高至98.9%。当倍率为10C时,包覆样品的放电比容量可达58.29mA·h/g,而未包覆仅为15.27mA·h/g。包覆5%LiAlO2的Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)正极材料具有最小的电荷转移阻抗。  相似文献   

2.
Li_(1.2)Fe_(0.052)Ni_(0.078)Co_(0.13)Mn_(0.54)O_2/C是先以MnO_2为模板用铁离子替换镍离子制备好Li_(1.2)Fe_(0.052)Ni_(0.078)Co_(0.13)Mn_(0.54)O_2,然后用碳包覆的方法制备而成的。经过电化学性能测量发现这种材料具有良好的电化学性能,通过XRD分析表明,所得材料具有层状α-NaFeO_2结构。用透射电镜观察发现,通过碳表面处理可以产生清晰的界面。样品在0.1C,电压2.5~4.8V下充放电70次后发现电池容量可达~210(mA·h/g)左右,且循环结束后容量可保持在86%左右。  相似文献   

3.
以CH_3COONa,Ni(CH_3COO)_2·4H_2O和Mn(CH_3COO)_2·4H_2O为原料,经过溶解、干燥和焙烧,得到产物Na(Ni_(0.5)Mn_(0.5))O_4.利用XRD,SEM对材料进行了结构和形貌的分析,结果显示产物含有少量的NiO相,呈片状形貌,颗粒小于5μm,有一定程度的团聚.对材料进行了不同倍率的充放电性能测试,产物展示了较好的电化学性能,0.1,0.2,0.5,1和5倍率时的放电容量分别为124,121,116.7,110.1和73.8mA·h/g.产物在2.0~4.0V电压区间充放电循环30次后,室温和55℃下的容量保持率分别为94.8%和91.1%,显示具有较好的高温性能,可以作为钠离子电池正极材料.  相似文献   

4.
采用共沉淀的方法将含有一定比例的镍、钴、锰的醋酸盐溶液均匀混合,然后加入适量的沉淀剂Na_2CO_3制备前驱体Mn_(0.466)Ni_(0.2)Co_(0.2)CO_3,与不同锂源(Li_2CO_3、LiOH)混合煅烧得到富锂锰基Li_(1.133)Mn_(0.466)Ni_(0.2)Co_(0.2)O_2正极材料.采用XRD和SEM分别对制备的(1.133)Mn_(0.466)Ni_(0.2)Co_(0.2)O_22的结构和表面形貌进行表征,采用恒电流充放电和循环伏安法对制备的(1.133)Mn_(0.466)Ni_(0.2)Co_(0.2)O_22的电化学性能进行测试.结果表明,以Li OH为锂源合成的样品在0.1C(1C=250 m A/g)倍率下首次充电比容量和放电比容量分别为330.1 m Ah/g和218.6 m Ah/g,首次库仑效率为66.23%,在1C倍率内表现为优秀的稳定循环比容量特性,但是在2C以及2C以上高倍率循环稳定性不及以Li_2CO_3为锂源合成样品的性能.  相似文献   

5.
为研究制备工艺对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料微结构及电化学性能的影响,采用共沉淀法,在搅拌速度分别为500、600、700、800 r/min下合成前驱体,再经850℃焙烧制得LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)等表征了样品的微结构;以CV阻抗测试、恒流充放电等技术测试了样品的电化学性能。结果表明,所有样品均为单一的六方晶系相,没有其他杂相。前驱体的搅拌速度为500、600、700、800 r/min时制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次充电比容量分别为167.4、185.8、169.4、149.6 m Ah/g,首次放电比容量分别为147.9、165.6、141.9、122.6 m Ah/g,首次库仑效率分别为88.3%、89.12%、83.6%、82.0%。可见,前驱体的搅拌速度为600 r/min、焙烧温度为850℃时所制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料具有较好的电化学性能。  相似文献   

6.
用溶胶-凝胶法制备纯相Na_4MnV(PO_4)_3@C材料,对Na_4MnV(PO_4)_3@C进行石墨烯复合,通过降低材料中Mn含量抑制体系的Jahn-Teller效应,并利用恒流充放电方法测试材料的电化学性能.结果表明:Na_4MnV(PO_4)3@C作为钠离子正极材料,在2.5~4.0V下的比容量为105mA·h/g,平均电压为3.6V,30次循环后的容量保持率为63%;复合后的材料在30次循环后,容量保持率为71%;低锰材料Na_(3.5)Mn_(0.5)V_(1.5)(PO_4)_3@C在2.5~4.2V下的比容量为110mA·h/g,50次循环后的容量保持率为90%,材料的容量保持率得到大幅度提高.  相似文献   

7.
分别利用溶胶-凝胶、有机共沉淀、水热过程3种方法制备前驱体,通过辅助微波加热制备了高电压正极材料镍锰酸锂(LiNi_(0.5)Mn_(1.5)O_4)尖晶石;利用X射线衍射光谱(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、电化学交流阻抗谱(EIS)和充放电测试,对所制备材料的结构、形貌和电化学性能进行了表征与测试。结果表明:不同制备方法所得前驱体经微波加热处理后均得到了立方结构的LiNi_(0.5)Mn_(1.5)O_4尖晶石,晶体结构处于Ni/Mn分布有序与无序之间;溶胶-凝胶辅助微波法制备的LiNi_(0.5)Mn_(1.5)O_4尖晶石结晶度较高,形貌规整,具有较好电化学性能,当放电流为0.2 C时,首次放电比容量为123.3 m A·h/g;在1 C下循环50圈后,容量保持率为94.5%。  相似文献   

8.
过渡金属氧化物作为锂离子电池(lithium-ion batteries,LIBs)阳极材料时具有较高的理论容量,但因其电导率低,以及充放电过程中的体积膨胀效应常会导致容量的快速衰减.碳包覆是提升金属氧化物导电性的有效方法,二者之间的协同效应也可以有效提升材料的电化学性能.以MnO_2纳米线为模板制备出MnO_2@ZIF-67有机-无机杂化纳米结构,再通过退火处理合成了氮掺杂碳包覆的MnO@CoMn_2O_4纳米线复合材料(MnO@CoMn_2O_4@N-C).ZIF-67的有机配体在高温煅烧过程中发生碳化反应,产生了氮掺杂碳,提升了导电性.当作为锂离子电池阳极材料时,MnO@CoMn_2O_4/N-C纳米线复合材料在0.1 A/g电流密度下的首次放电比容量为1 594.6 mA·h/g,并且在100次充放电循环后的放电比容量仍保持在925.8 mA.h/g,在0.5 A/g电流密度下经200次充放电循环后的放电比容量仍维持在837.6 mA·h/g,同时具有优异的倍率循环性能.这种优异的电化学储能特性主要来源于复合材料的特殊结构,以及氮掺杂碳的包覆.  相似文献   

9.
通过共沉淀法合成了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4,并使用Zn O对其表面进行包覆改性。通过X射线衍射(XRD)、激光拉曼光谱(Raman)、场发射扫描电镜(FESEM)、透射电子显微镜(TEM)、电化学阻抗图谱(EIS)、恒流充放电循环测试分析技术对所得材料进行测试与表征。结果表明:包覆未改变基体结构并且适量的ZnO包覆可以提高LiNi_(0.5)Mn_(1.5)O_4的电化学性能。当包覆量为1. 5%时,材料的电化学性能提升最为明显,室温0. 1C倍率和1C倍率下首次放电比容量分别为133. 15,132. 66 m Ah/g,充放电循环100次后容量保持率分别为96. 1%,90. 1%;在55℃高温1C倍率下首次放电比容量为126. 96 m Ah/g,充放电循环100次后容量保持率仍能达到77. 2%,而未包覆的LiNi_(0.5)Mn_(1.5)O_4在相同条件下容量保持率仅为42. 9%。  相似文献   

10.
采用微反应器法制备前驱体Fe_3(PO_4)_2·8H_2O和Mn_3(PO_4)2·3H_2O磷酸盐材料,并通过固相法制备含C的磷酸铁锂LiFePO_4/C(LFP/C)、磷酸锰锂LiMnPO_4/C(LMP/C)和磷酸锰铁锂LiFe_(0.5)Mn_(0.5)PO_4/C(LFMP/C)以及不含C的磷酸锰铁锂LiFe_(0.5)Mn_(0.5)PO_4(LFMP)4种正极材料。分别采用X线衍射仪(XRD)、拉曼光谱仪(Raman)、扫描电子显微镜(SEM)和电化学测试系统进行样品结构、形貌和电化学性能的表征。结果表明:通过微反应器法控制p H可获得颗粒细小、均匀的纳米磷酸盐前驱体,LFMP/C拥有最高的首次放电比能量526.12W·h/kg,且放电比容量达146.82 mA·h/g,50次循环后容量保持率达94%,电化学性能优异。  相似文献   

11.
采用草酸盐沉淀及高温固相反应相结合的方法合成了锂离子电池的活性正极材料Li_aNi_(0.7)Co_(0.3)O_2.XRD、SEM及电化学测试数据表明:该材料结晶及层状结构良好,首次充放电比容量为175.4mAh/g和142.9mAh/g,循环30次后放电比容量仍为136.0mAh/g,比容量损失只有4.8%.  相似文献   

12.
基于Li_4Ti_5O_(12)结构,设计双离子取代反应,制备了3种新型锂离子负极材料Li_3Ti_4CrMO_(12)(M=Ni、Ca、Mg),这些取代型负极材料具有与钛酸锂相同的晶体结构.使用球磨、喷雾造粒以及固相合成工艺制备出一次粒子为200~300nm,二次颗粒为多孔球形的新型负极材料Li_3Ti_4CrMO_(12),并对其电化学性能进行了测试.循环充放电试验结果表明,制备的3种材料中,镁铬钛酸锂(Li_3Ti_4CrMgO_(12))具有较高的放电比容量和较好的循环稳定性,0.2C下首次放电比容量达158.6mA·h/g.10次循环后,放电容量为148.1mA·h/g,充电容量为149.1mA·h/g,容量保持率和库伦效率均在99%以上,显示了潜在的应用价值.循环伏安(CV)和电化学阻抗谱(EIS)分析表明,上述优良性能来自于Mg、Cr取代后导致的材料界面电阻的下降.  相似文献   

13.
利用溶胶凝-胶法制备了LaNiyFe1-yO3-δ(y=0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9)系列储氢氧化物,采用FTIR、XRD对结构进行了表征,并对其不同温度下的电化学性能进行了研究。结果表明:常压298 K时,随着Ni含量的增加,电极的最大放电容量先增大后减小,其中LaNi0.2Fe0.8O3-δ效果最佳,其最大放电容量为128 mA·h/g,比未替代的LaFeO3提高了20 mA·h/g;经过30次充放电循环后的最大容量衰减率为14.84%,比LaFeO3下降了2.29%;温度升高,放电容量显著增大,333 K时达到最大值395.5 mA·h/g;与此同时,容量衰减率有所增加,但LaNi0.2Fe0.8O3-δ的衰减率明显低于同温度下的LaFeO3。  相似文献   

14.
通过聚甲基丙烯酸甲酯(PMMA)胶晶模板法制备尖晶石型LiMn2O4材料,并探讨焙烧温度对材料性能的影响.运用热重分析(TG)、X线衍射(XRD)、扫描电镜(SEM)、充放电测试和循环伏安测试等方法对LiMn2O4样品的结构、形貌以及电化学性能进行表征和测试.研究结果表明:在不同温度下制备的LiMn2O4样品均具有较好的尖晶石型结构,且粒径分布均匀:在700℃时制备的LiMn2O4样品(S-700)具有最佳的电化学性能,在3.0~4.4 V时,0.2C倍率首次放电比容量为130.9 mA·h/g; 0.5C倍率首次放电比容量为126.4 mA·h/g,50次循环之后容量仍有102.7 mA·h/g,具有良好的循环稳定性.  相似文献   

15.
以廉价的Fe3 为铁源,通过溶胶和碳热还原两步法制备出锂离子正极材料LiFePO4,用XRD、SEM、交流阻抗和恒流充放电方法表征了材料的结构、形貌和电化学性能.结果表明,合成的材料具有橄榄石型晶体结构;碳可以抑制材料颗粒的团聚,降低电极反应阻抗;在0.1 C的放电倍率下,LiFePO4首次放电容量为103.3 mA·h/g,LiFePO4/C在放电倍率0.1 C、0.2 C和0.5 C下的首次放电容量分别为147.9 mA·h/g、133.3 mA·h/g和122.1 mA·h/g, 20次循环后容量衰减率分别为3.0 %、2.7%和2.4%.  相似文献   

16.
采用共沉淀法制备前驱体,并采用高温固相法合成单相层状结构LiNi0.3Co0.4Mn0.3O2 材料(R-3m 空间群).用X 射线衍射、恒电流充放电方法对所合成材料与LiNi1/3Co1/3Mn1/3O2 材料进行结构和电化学性能对比分析.研究结果表明,LiNi0.3Co0.4Mn0.3O2 具有有序的二维层状结构,在2.75~4.3 V 电压区间以0.1C 倍率进行充放电,首次放电容量、效率分别为152.3 mA·h/g 和84.4%,LiNi0.3Co0.4Mn0.3O2 具有更高的放电平台率,首次放电时3.6 V平台率为95.0%;以0.2C 倍率进行30 次充放电循环后,放电容量保持率为初始容量的97.4%.  相似文献   

17.
采用固相法合成纯相的Na_2Co_2TeO_6材料.利用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)研究其晶体结构和元素价态,并用恒流充放电测试、倍率及循环伏安测试研究该材料在3.0~0.01 V内的电化学性质和动力学性能.结果表明:Na_2Co_2TeO_6作为电池负极材料具有良好的循环性能,稳定容量为200mA·h/g,充放电效率为95%;该材料具有较好的倍率性能,在电流密度500 mA/g下,仍可保持50 mA·h/g的稳定容量.  相似文献   

18.
以Mn(NO_3)_2和NaOH为原料,采用沉淀法合成了用作超级电容器电极材料Na_(0.7)MnO_(2.05).扫描电子显微镜(SEM)观察结果表明所制备样品呈层状板块形貌.电化学测试结果表明,Na_(0.7)MnO_(2.05)是一种性能比较优良的超级电容器电极材料.在1mol·L~(-1) Na_2SO_4电解质溶液中,0~1V的电压范围内,充放电电流密度为200mA·g~(-1)时,比容量高达201F·g~(-1),库伦效率接近100%.  相似文献   

19.
金属硫化物具有较大的理论容量,有望成为下一代的锂电池负极材料,但是充放电过程中材料发生严重的膨胀/收缩、晶体粉化,使得材料的比容量迅速衰减.本文以铁醇盐为原料制备具有花状微纳结构的FeS_2,以达到抑制材料粉化效果.结果显示,300℃热处理得到的FeS_2样品能够充分保持中间体铁醇盐的花状微纳结构,结晶度高.450℃处理得到的样品表面为多孔状结构,而800℃处理未得到目标产物,样品分子式是Fe_9S_(10).电化学测试结果表明:300℃所得产物具有1 484.3mA·h/g的放电比容量,高于450℃的产物(1 326.7mA·h/g);在电流密度为200mA/g条件下,100次充放电循环后,300℃所得产物的放电比容量为480.8mA·h/g,远高于450℃所得产物的放电比容量(215.8mA·h/g).研究结果表明具有花状微纳结构对材料的粉化现象有较好的抑制作用.  相似文献   

20.
用固相燃烧法合成LiNi_(0.10)Znx Mn_(1.90-x)O_4(x≤0.15)正极材料. XRD与SEM表明,所有样品都属于LiMn_2O_4材料典型的尖晶石结构,无杂相生成,且均为分散性好、结晶性高的类球多面体,颗粒尺寸为100~200 nm.其中,LiNi_(0.10)Zn_(0.02)Mn_(1.88)O_4样品的粒径相对较小,为130 nm.电性能结果表明,LiNi_(0.10)Zn_(0.02)Mn_(1.88)O_4样品具有优异的循环稳定性和倍率性能,在1 C循环1 000次后可维持76.3%的容量保持率,在较高倍率5 C、10 C和20 C,分别释放出98.0,91.7 mA·h·g~(-1)和88.8 mA·h·g~(-1)的比容量,表现出最优的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号