首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
发展了层状超导体中3D磁通线模型,用动力学模拟方法数值研究了磁通格子的有序-无序熔化相变.在无序强度温度相图中,发现从有序的布拉格玻璃相到无序的磁通玻璃相之间的固-固相变线在中等温度区域有一个突起,与最近实验上得到的"反向熔化"现象一致.这一反向熔化行为起因于磁通之间相互作用的异常温度效应.  相似文献   

2.
Vortex dynamics in superconducting MgB2 and prospects for applications   总被引:9,自引:0,他引:9  
Bugoslavsky Y  Perkins GK  Qi X  Cohen LF  Caplin AD 《Nature》2001,410(6828):563-565
The recently discovered superconductor magnesium diboride, MgB2, has a transition temperature, Tc, approaching 40 K, placing it intermediate between the families of low- and high-temperature superconductors. In practical applications, superconductors are permeated by quantized vortices of magnetic flux. When a supercurrent flows, there is dissipation of energy unless these vortices are 'pinned' in some way, and so inhibited from moving under the influence of the Lorentz force. Such vortex motion ultimately determines the critical current density, Jc, which the superconductor can support. Vortex behaviour has proved to be more complicated in high-temperature superconductors than in low-temperature superconductors and, although this has stimulated extensive theoretical and experimental research, it has also impeded applications. Here we describe the vortex behaviour in MgB2, as reflected in Jc and in the vortex creep rate, S, the latter being a measure of how fast the 'persistent' supercurrents decay. Our results show that naturally occurring grain boundaries are highly transparent to supercurrents, a desirable property which contrasts with the behaviour of the high-temperature superconductors. On the other hand, we observe a steep, practically deleterious decline in Jc with increasing magnetic field, which is likely to reflect the high degree of crystalline perfection in our samples, and hence a low vortex pinning energy.  相似文献   

3.
Electronic nematicity, a unidirectional self-organized state that breaks the rotational symmetry of the underlying lattice, has been observed in the iron pnictide and copper oxide high-temperature superconductors. Whether nematicity plays an equally important role in these two systems is highly controversial. In iron pnictides, the nematicity has usually been associated with the tetragonal-to-orthorhombic structural transition at temperature T(s). Although recent experiments have provided hints of nematicity, they were performed either in the low-temperature orthorhombic phase or in the tetragonal phase under uniaxial strain, both of which break the 90° rotational C(4) symmetry. Therefore, the question remains open whether the nematicity can exist above T(s) without an external driving force. Here we report magnetic torque measurements of the isovalent-doping system BaFe(2)(As(1-x)P(x))(2), showing that the nematicity develops well above T(s) and, moreover, persists to the non-magnetic superconducting regime, resulting in a phase diagram similar to the pseudogap phase diagram of the copper oxides. By combining these results with synchrotron X-ray measurements, we identify two distinct temperatures-one at T*, signifying a true nematic transition, and the other at T(s) (相似文献   

4.
General arguments suggest that first-order phase transitions become less sharp in the presence of weak disorder, while extensive disorder can transform them into second-order transitions; but the atomic level details of this process are not clear. The vortex lattice in superconductors provides a unique system in which to study the first-order transition on an inter-particle scale, as well as over a wide range of particle densities. Here we use a differential magneto-optical technique to obtain direct experimental visualization of the melting process in a disordered superconductor. The images reveal complex behaviour in nucleation, pattern formation, and solid-liquid interface coarsening and pinning. Although the local melting is found to be first-order, a global rounding of the transition is observed; this results from a disorder-induced broad distribution of local melting temperatures, at scales down to the mesoscopic level. We also resolve local hysteretic supercooling of microscopic liquid domains, a non-equilibrium process that occurs only at selected sites where the disorder-modified melting temperature has a local maximum. By revealing the nucleation process, we are able to experimentally evaluate the solid-liquid surface tension, which we find to be extremely small.  相似文献   

5.
Sachdev S  Starykh OA 《Nature》2000,405(6784):322-325
In many two-dimensional superconducting systems, such as Josephson-junction arrays, granular superconducting films, and the high-temperature superconductors, it appears that the electrons bind into Cooper pairs below a pairing temperature (T(P)) that is well above the Kosterlitz-Thouless temperature (T(KT)) the temperature below which there is long-range superconducting order). The electron dynamics at temperatures between T(KT) and T(P) involve a complex interplay of thermal and quantum fluctuations, for which no quantitative theory exists. Here we report numerical results for this region, by exploiting its proximity to a T = 0 superconductor-insulator quantum phase transition. This quantum critical point need not be experimentally accessible for our results to apply. We characterize the static, thermodynamic properties by a single dimensionless parameter, gamma(T). Quantitative and universal results are obtained for the frequency dependence of the conductivity, which are dependent only upon gamma(T) and fundamental constants of nature.  相似文献   

6.
A model for high-temperature superconductors incorporating antiferromagnetism, d-wave superconductivity, and no double latticesite occupancy can give energy surfaces delicately balanced between antiferromagnetic and superconducting order for specific ranges of doping and temperature. The resulting properties can reconcile a universal cuprate phase diagram with rich inhomogeneity, relate that inhomogeneity to pseudogaps, give a fundamental rationale for giant proximity effects and other emergent behavior, and provide an objective framework to separate essential from peripheral in the superconducting mechanism. high-temperature superconductivity, pseudogap, critical dynamical symmetry, inhomogeneity, complexity, emergent behavior  相似文献   

7.
从GL(Ginzburg-Landau)自由能出发,在最低朗道能级近似下,用蒙特卡罗的方法模拟了二维无序第二类超导体涡旋态系统.对于纯净的涡旋系统,得到了从涡旋固态到涡旋液态的一级相变,验证了前人的理论.对于无序的涡旋系统,发现低温区域存在Bragg玻璃态.  相似文献   

8.
A change in 'symmetry' is often observed when matter undergoes a phase transition-the symmetry is said to be spontaneously broken. The transition made by underdoped high-transition-temperature (high-Tc) superconductors is unusual, in that it is not a mean-field transition as seen in other superconductors. Rather, there is a region in the phase diagram above the superconducting transition temperature Tc (where phase coherence and superconductivity begin) but below a characteristic temperature T* where a 'pseudogap' appears in the spectrum of electronic excitations. It is therefore important to establish if T* is just a cross-over temperature arising from fluctuations in the order parameter that will establish superconductivity at Tc (refs 3, 4), or if it marks a phase transition where symmetry is spontaneously broken. Here we report that, for a material in the pseudogap state, left-circularly polarized photons give a different photocurrent from right-circularly polarized photons. This shows that time-reversal symmetry is spontaneously broken below T*, which therefore corresponds to a phase transition.  相似文献   

9.
Fermi-liquid theory (the standard model of metals) has been challenged by the discovery of anomalous properties in an increasingly large number of metals. The anomalies often occur near a quantum critical point--a continuous phase transition in the limit of absolute zero, typically between magnetically ordered and paramagnetic phases. Although not understood in detail, unusual behaviour in the vicinity of such quantum critical points was anticipated nearly three decades ago by theories going beyond the standard model. Here we report electrical resistivity measurements of the 3d metal MnSi, indicating an unexpected breakdown of the Fermi-liquid model--not in a narrow crossover region close to a quantum critical point where it is normally expected to fail, but over a wide region of the phase diagram near a first-order magnetic transition. In this regime, corrections to the Fermi-liquid model are expected to be small. The range in pressure, temperature and applied magnetic field over which we observe an anomalous temperature dependence of the electrical resistivity in MnSi is not consistent with the crossover behaviour widely seen in quantum critical systems. This may suggest the emergence of a well defined but enigmatic quantum phase of matter.  相似文献   

10.
Although crystals are usually quite stable, they are sensitive to a disordered environment: even an infinitesimal amount of impurities can lead to the destruction of crystalline order. The resulting state of matter has been a long-standing puzzle. Until recently it was believed to be an amorphous state in which the crystal would break into 'crystallites'. But a different theory predicts the existence of a novel phase of matter: the so-called Bragg glass, which is a glass and yet nearly as ordered as a perfect crystal. The 'lattice' of vortices that contain magnetic flux in type II superconductors provide a good system to investigate these ideas. Here we show that neutron-diffraction data of the vortex lattice provides unambiguous evidence for a weak, power-law decay of the crystalline order characteristic of a Bragg glass. The theory also predicts accurately the electrical transport properties of superconductors; it naturally explains the observed phase transitions and the dramatic jumps in the critical current associated with the melting of the Bragg glass. Moreover, the model explains experiments as diverse as X-ray scattering in disordered liquid crystals and the conductivity of electronic crystals.  相似文献   

11.
FeSe及其衍生化合物因表现出奇特的正常态和超导态性质,成为近年来铁基超导领域的研究热点,其中高压技术在揭示FeSe中的竞争电子序和调控高温超导方面发挥了重要作用.本文概述了利用六面砧装置对FeSe基超导体的高压研究进展,主要内容包括:(1)通过建立FeSe的完整温度-压力相图,观察到圆拱形的反铁磁相界并详细揭示了电子向列序、长程反铁磁序和超导相之间的竞争关系,结合高压下的霍尔效应测试进一步表明反铁磁临界涨落对实现高温超导具有重要作用;(2)在多个插层FeSe高温超导体中,普遍发现高压会首先抑制超导I相,然后在临界压力之上诱导出高温超导Ⅱ相,呈现出双拱形超导相图,而且最高临界温度突破50 K;(3)结合高压X射线衍射和霍尔效应测试,指出超导Ⅱ相的出现和伴随的载流子浓度提高很可能源于压力诱导的费米面重构.  相似文献   

12.
Melting of iron at the physical conditions of the Earth's core   总被引:1,自引:0,他引:1  
Nguyen JH  Holmes NC 《Nature》2004,427(6972):339-342
Seismological data can yield physical properties of the Earth's core, such as its size and seismic anisotropy. A well-constrained iron phase diagram, however, is essential to determine the temperatures at core boundaries and the crystal structure of the solid inner core. To date, the iron phase diagram at high pressure has been investigated experimentally through both laser-heated diamond-anvil cell and shock-compression techniques, as well as through theoretical calculations. Despite these contributions, a consensus on the melt line or the high-pressure, high-temperature phase of iron is lacking. Here we report new and re-analysed sound velocity measurements of shock-compressed iron at Earth-core conditions. We show that melting starts at 225 +/- 3 GPa (5,100 +/- 500 K) and is complete at 260 +/- 3 GPa (6,100 +/- 500 K), both on the Hugoniot curve-the locus of shock-compressed states. This new melting pressure is lower than previously reported, and we find no evidence for a previously reported solid-solid phase transition on the Hugoniot curve near 200 GPa (ref. 16).  相似文献   

13.
'Inverse' melting of a vortex lattice   总被引:1,自引:0,他引:1  
Inverse melting is the process in which a crystal reversibly transforms into a liquid or amorphous phase when its temperature is decreased. Such a process is considered to be very rare, and the search for it is often hampered by the formation of non-equilibrium states or intermediate phases. Here we report the discovery of first-order inverse melting of the lattice formed by magnetic flux lines in a high-temperature superconductor. At low temperatures, disorder in the material pins the vortices, preventing the observation of their equilibrium properties and therefore the determination of whether a phase transition occurs. But by using a technique to 'dither' the vortices, we were able to equilibrate the lattice, which enabled us to obtain direct thermodynamic evidence of inverse melting of the ordered lattice into a disordered vortex phase as the temperature is decreased. The ordered lattice has larger entropy than the low-temperature disordered phase. The mechanism of the first-order phase transition changes gradually from thermally induced melting at high temperatures to a disorder-induced transition at low temperatures.  相似文献   

14.
Belonoshko AB  Ahuja R  Johansson B 《Nature》2003,424(6952):1032-1034
Iron is thought to be the main constituent of the Earth's core, and considerable efforts have therefore been made to understand its properties at high pressure and temperature. While these efforts have expanded our knowledge of the iron phase diagram, there remain some significant inconsistencies, the most notable being the difference between the 'low' and 'high' melting curves. Here we report the results of molecular dynamics simulations of iron based on embedded atom models fitted to the results of two implementations of density functional theory. We tested two model approximations and found that both point to the stability of the body-centred-cubic (b.c.c.) iron phase at high temperature and pressure. Our calculated melting curve is in agreement with the 'high' melting curve, but our calculated phase boundary between the hexagonal close packed (h.c.p.) and b.c.c. iron phases is in good agreement with the 'low' melting curve. We suggest that the h.c.p.-b.c.c. transition was previously misinterpreted as a melting transition, similar to the case of xenon, and that the b.c.c. phase of iron is the stable phase in the Earth's inner core.  相似文献   

15.
本文用几何方法对二维系统的融化过程作了全面的研究。在仅考虑排斥势的情况下修正了Kawamura等人的理论,理论计算值与计算机模拟实验的结果接近。在计入吸引势后采用凝聚态Van der waals理论中的近似展开,所得融化曲线在三相点附近更接近正确的位置。  相似文献   

16.
A model for high-temperature superconductors incorporating antiferromagnetism,d-wave superconductivity,and no double lattice-site occupancy can give energy surfaces delicately balanced between antiferromagnetic and superconducting order for specific ranges of doping and temperature. The resulting properties can reconcile a universal cuprate phase diagram with rich inhomogeneity,relate that inhomogeneity to pseudogaps,give a fundamental rationale for giant proximity eects and other emergent behavior,and provide an objective framework to separate essential from peripheral in the superconducting mechanism.  相似文献   

17.
The application of a sufficiently strong magnetic field to a superconductor will, in general, destroy the superconducting state. Two mechanisms are responsible for this. The first is the Zeeman effect, which breaks apart the paired electrons if they are in a spin-singlet (but not a spin-triplet) state. The second is the so-called 'orbital' effect, whereby the vortices penetrate into the superconductors and the energy gain due to the formation of the paired electrons is lost. For the case of layered, two-dimensional superconductors, such as the high-Tc copper oxides, the orbital effect is reduced when the applied magnetic field is parallel to the conducting layers. Here we report resistance and magnetic-torque experiments on single crystals of the quasi-two-dimensional organic conductor lambda-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene. We find that for magnetic fields applied exactly parallel to the conducting layers of the crystals, superconductivity is induced for fields above 17 T at a temperature of 0.1 K. The resulting phase diagram indicates that the transition temperature increases with magnetic field, that is, the superconducting state is further stabilized with magnetic field.  相似文献   

18.
对采用不同温度烧结的Bi系2212相样品的R—T曲线测量表明,随着烧结温度的增高,R—T曲线发生由超导相向半导体相的转变,而且这种转变无法以CuO2面的结构畸变来解释.认为是因为烧结温度的不同导致了样品中载流子浓度的变化而引起的样品超导电性的变化.烧结温度升高,样品中的载流子浓度减小,导致了样品由超导相向半导体相的转变,与铜氧化物超导体相图所显示的规律性是一致的.  相似文献   

19.
Observation of the ideal Josephson effect in superfluid 4He   总被引:1,自引:0,他引:1  
Sukhatme K  Mukharsky Y  Chui T  Pearson D 《Nature》2001,411(6835):280-283
Superfluids and superconductors are the only states of condensed matter that can be described by a single wavefunction, with a coherent quantum phase Phi. The mass flow in a superfluid can be described by classical hydrodynamics for small flow velocity, but above a critical velocity, quantized vortices are created and the classical picture breaks down. This can be observed for a superfluid flowing through a microscopic aperture when the mass flow is measured as a function of the phase difference across the aperture; the curve resembles a hysteretic sawtooth where each jump corresponds to the creation of a vortex. When the aperture is made small enough, the system can enter the so-called 'ideal' Josephson regime, where the superfluid mass flow becomes a continuous function of the phase difference. This regime has been detected in superfluid 3He, but was hitherto believed to be unobservable, owing to fluctuations, in 4He. Here we report the observation of the ideal Josephson effect in 4He. We study the flow of 4He through an array of micro-apertures and observe a transition to the ideal Josephson regime as the temperature is increased towards the superfluid transition temperature, Tlambda.  相似文献   

20.
Roch N  Florens S  Bouchiat V  Wernsdorfer W  Balestro F 《Nature》2008,453(7195):633-637
Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号