首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The cDNA of AtPLDa (Arabidopsis thaliana Phospholipase Da) gene was introduced into P. tomentosa (Populus tomentosa) under the control of the Cauliflower mosaic virus 35S promoter. Southern and Northern blot analyses suggested that the AtPLDa gene has been transferred into the P. tomentosa genome. No obvious morphological or developmental difference was observed between the transgenic and wild-type (WT) plants. Drought and salt tolerance and gene expression of seedlings of several transgenic lines and WT plants (control) were studied. The results showed that the rhizogenesis rate and the average root-length of transgenic lines were significantly higher than WT plants after mannitol and NaCI treatment under the same growth conditions. Northern blot analysis indicated that the higher the PLDa expression in the transgenic plants, the more tolerant the transgenic plants are to drought and salt treatment. Meanwhile, another group of these transgenic lines and WT plants (control) were treated with PEG6000 and NaCI separately. The contents of chlorophylls and the activities of some anti- oxidant enzymes (superoxide dismutase, guaiacol peroxidase and catalase) as well as malondialdehyde and relative electrical conductivity were analyzed. Altogether, our results demonstrated that overexpression of the PLDa gene can enhance the drought and salt tolerance in transgenic P. tomentosa plants.  相似文献   

2.
Oil-soluble In2O3 nanoparticles and In2O3–SnO 2 nanocomposites were prepared in oleylamine via decomposition of metal acetylacetonate precursors. Thin films of In2O3 and In2O3–SnO 2 were obtained by spin-coating solutions of the oil-soluble In2O3 nanoparticles and In2O3–SnO 2 nanocomposites onto substrates and then calcining them. Transmission electron microspectroscopy, scanning electron microspectroscopy, atomic force microspectroscopy, X-ray diffraction, ultraviolet–visible absorption, and photoluminescence spectroscopy were used to investigate the properties of the nanoparticles and thin films. The In2O3 nanoparticles were cubic-phased spheres with a diameter of ~8 nm; their spectra exhibited a broad emission peak centered at 348 nm. The In2O3–SnO 2 nanocomposites were co-particles composed of smaller In2O3 particles and larger SnO 2 particles; their spectra exhibited a broad emission peak at 355 nm. After the In2O3–SnO 2 nanocomposites were calcined at 400°C, the obtained thin films were highly transparent and conductive, with a thickness of 30–40 nm; the surfaces of the thin films were smooth and crack-free.  相似文献   

3.
P chromosomes may carry a genetic system that inhibits the Ph gene in wheat. Abnormal chromosome synapsis in wheat-Agropyron cristatum addition line II-21-2 (additional 1·4 recombinant P chromosome) was observed in this study. The results of cytogenetics and Ph1 gene amplification showed that the Ph1 gene was normal and the average number of quadrivalents or hexavalents was determined to be 0.41 and 0.13, respectively, in pollen-mother cells of wheat-Agropyron cristatum addition line II-21-2. The analysis o...  相似文献   

4.
Zn1-xNixTe thin films with different composition(x=0.0, 0.05, 0.10, 0.15 and 0.20) were deposited on glass substrate by electron beam evaporation technique followed by its characterization using advanced structural and optical analysis techniques. Structural properties of the prepared thin films were studied by X-ray diffraction(XRD). The XRD patterns revealed that the binary compounds transformed into a ternary compound with cubic structure having preferred orientation along the c-direction with(111) planes. Composition analysis of the films was determined by energy dispersive analysis of X-rays(EDAX) and found to be in agreement with the precursor composition. Optical properties such as extinction coefficient(k) and band gap energy of these films were examined by using a spectroscopic ellipsometer. It was found that the extinction coefficient(k) increased with the addition of Ni content in the alloy. In comparison, the band gap energy was also determined by using transmission spectra and found to be agreed with that of the ellipsometric results. These analyses confirm that the band gap energy decreases with the increase of Ni content in the alloy.  相似文献   

5.
The structural, vibrational and impedance analysis for(Zn O)1 x(Sb2O3)xcomposite synthesized by solid state reaction technique were carried out in the present investigation. X-ray diffraction(XRD) study showed that(Zn O)1 x(Sb2O3)xcomposite has hexagonal(wurtzite) crystal structure. Variation in lattice constants with Sb-doping indicated the proper incorporation of Sb dopant in Zn O host matrix. The results of Raman spectroscopy test suggested the signature of E2(high) and E1(TO) Raman modes, and verified the wurtzite structure of(Zn O)1 x(Sb2O3)x composite. Two additional phonon bands(671, 712) cm 1appeared in Raman spectra of composite samples due to the existence of the lattice defects caused by Sb doping or may be other intrinsic lattice defects formed during the synthesis of(Zn O)1 x(Sb2O3)xcomposite. The frequency dependent on the electrical characteristics, such as, impedance(Z), dielectric constant(ε) and AC conductivity(σ) have been studied in a range of frequencies for different Sb concentration at room temperature. The electrical measurement results showed that the impedance increased with Sb dopant concentration, while dielectric constant and AC conductivity decreased with Sb dopant concentration.  相似文献   

6.
Degenerate four-wave mixing measurements, using the 35 ps pulses at 532 nm, have been employed to investigate the third-order nonlinear optical parameters of two chromium tricarbonyl complexes η6-bonded to 3-amino-9-ethylcarbazole at either the NH2-substituted aryl ring (1) or the unsubstituted ring (2) and their precursor 3-amino-9-ethylcarbazole (AECz). The second-order hyperpolarizability y of the compounds 1 and 2 were found to be 42.9×10^-31 and 35.9×10^-31 esu, respectively, approximately one order of magnitude greater than AECz. The relation between the molecular structure and second-order hyperpolarizability of the compounds I and 2 was explored in detail based on the three-level model and the density functional theory (DFT) calculation. The theoretical results indicate that the spatial distribution of electron density has the profound role in the third-order nonlinear optical properties.  相似文献   

7.
Cd5Se95–xZnx(x=0, 2, 4, 6) glassy alloy has been prepared by a melt-quenching technique. Thin films were deposited by thermal coating unit on ultraclean glass substrate under a vacuum of 10–6Torr. The absence of any sharp peaks in the X-ray diffraction confirms the amorphous nature of thin films. The frequency and temperature dependence of dielectric constant and dielectric loss in the frequency range of 1 kHz to 1 MHz and in the temperature range of 290–370 K were studied. Dielectric dispersion was observed when Zinc(Zn) was incorporated into the Cd–Se system.The increase in dielectric parameter with Zn concentration may be due to increase in defect states. The DC conductivity has been reported to investigate the effect of Zn concentration on DC conduction loss. The results are interpreted in term of dipolar theory for Cd5Se95 and Cd5Se93Zn2samples, while the remaining samples have been explained on the basis of DC conduction loss. It was also observed that the DC conductivity increased with the increase of Zinc concentration, which may be due to the decrease in the band gap near Fermi level.  相似文献   

8.
Ozone(O3) and secondary organic aerosol (SOA) are considered to be the most serious secondary air pollutants of concern in most metropolitan areas, as well as for Beijing. In this study, 03 and SOA formation potential of α-pinene, the most abundant biogenic VOCs, is investigated at Tsinghua Indoor Chamber Facility. The experiments were conducted under atmospheric relevant HCs/NOx ratios in both presence and absence of ammonia sulfate seed aerosol. A Scanning Mobility Particle Sizer system (3936, TSI) and a Condensation Particle Counter (3010, TSI) were used to study the SOA formation and a gas chromatograph (GC) equipped with a DB-5 column and a flame ionization detector (FID) was used to measure α-pinene simultaneously. The results show that the presence of ammonia sulfate seed aerosol did not change the formation trend of 03, but significantly contribute to SOA formation. A strong linear relationship (r^2 = 0.90) between SOA yield enhancement (△Y*) and surface concentration of seed aerosol (PM1, s)has been found, denoting that the PMi, s is the control factor for SOA yield enhancement. And the possible reason for the enhancement is acid-catalyzed heterogeneous reactions.  相似文献   

9.
Highly transparent and conducting Al-doped Zn O(Al:Zn O) thin films were grown on glass substrates using pulsed laser deposition technique.The profound effect of film thickness on the structural, optical and electrical properties of Al:Zn O thin films was observed. The X-ray diffraction depicts c-axis, plane(002) oriented thin films with hexagonal wurtzite crystal structure. Al-doping in Zn O introduces a compressive stress in the films which increase with the film thickness. AFM images reveal the columnar grain formation with low surface roughness. The versatile optical properties of Al:Zn O thin films are important for applications such as transparent electromagnetic interference(EMI) shielding materials and solar cells. The obtained optical band gap(3.2–3.08 e V) was found to be less than pure Zn O(3.37 e V) films. The lowering in the band gap in Al:Zn O thin films could be attributed to band edge bending phenomena. The photoluminescence spectra gives sharp visible emission peaks, enables Al:Zn O thin films for light emitting devices(LEDs) applications. The current–voltage(I–V) measurements show the ohmic behavior of the films with resistivity(ρ) 10-3Ω cm.  相似文献   

10.
Mn1-xZnxFe2O4 thin films with various Zn contents and of different thickness were synthesized on glass substrates directly by electroless plating in aqueous solution at 90℃ without heat treatment.The Mn-Zn ferrite films have a single spinel phase structure and well-crystallized columnar grains growing perpendicularly to the substrates.The results of conversion electron 57Fe M?ssbauer spectroscopy(CEMS)indicate that the cation distribution of Mn1-xZnxFe2O4 ferrite nanocrystal thin films fabricated by electroless plating is different from the bulk materials' and a great quantity of Fe3 ions are still present on A sites for x>0.5.When the Zn content of the films increases,Fe3 ions in the films transfer from A sites to B sites and the hyperfine magnetic field reduces,suggesting that Zn2 has strong chemical affinity towards the A sites.On the other side,with the increase of the thickness of the films,Fe3 ions,at B sites in the spinel structure,increase and the array of magnetic moments no longer lies in the thin film plane completely.At x = 0.5,Hc and Ms of Mn1-xZnxFe2O4 thin films show a minimum of 3.7 kA/m and a maximum of 419.6 kA/m,respectively.  相似文献   

11.
Mn1-xZnxFe2O4thin films with various Zn contents and of different thickness were synthesized on glass substrates directly by electroless plating in aqueous solution at 90℃ without heat treatment. The Mn-Zn ferrite films have a single spinel phase structure and well-crystallized columnar grains growing per- pendicularly to the substrates. The results of conversion electron ^57Fe Mossbauer spectroscopy (CEMS) Indicate that the cation distribution of Mn1-xZnxFe204 ferrite nanocrystal thin films fabricated by electroless plating is different from the bulk materials' and a great quantity of Fe^3+ ions are still present on A sites for x〉0.5. When the Zn content of the films increases, Fe^3+ ions in the films transfer from A sites to B sites and the hyperfine magnetic field reduces, suggesting that Zn2. has strong chemical affinity towards the A sites. On the other side, with the increase of the thickness of the films, Fe3+ ions, at B sites in the spinel structure, increase and the array of magnetic moments no longer lies in the thin film plane completely. At x = 0.5, Hc and Ms of Mn1-xZnxFe204thin films show a minimum of 3.7 kA/m and a maximum of 419.6 kA/m, respectively.  相似文献   

12.
Ge-As-Se chalcogenide thin films show a wide range of photosensitivity, which is utilized for the fabrication of micro-optical elements for integrated optics. The photosensitivity of GexAs40Se60?x(x=0,15) chalcogenide thin films for UV light was presented. For that purpose, the bulk samples of GexAs40Se60?x(x=0,15) chalcogenide glasses were prepared using conventional melt quenching technique, and thin films were prepared using thermal evaporation technique. These thin films were exposed to UV light for two hours. Amorphous natures of bulk samples and thin films were verified by XRD and chemical compositions were verified by EDX measurements. The thicknesses of the thin films were measured using a thickness profilometer. Linear optical analysis of these thin films was done using transmission spectra in wavelength range of 300?900 nm. Optical bandgap was determined by first peak of transmission derivative as well as extrapol ation of Tauc’s plot. R2 analysis was done using R software to ensure that the material is indirect bandgap material. It is observed that two hours UV exposure causes photo-darkening along with photo-expansion in As40Se60 thin films, while photo-bleach ing and photo-densification for Ge15As40Se45 thin films. However, the amounts of photo-induced optical changes for Ge15As40Se45 thin films are smaller than those for As40Se60 thin films. The changes in optical absorption, bandgap and thickness are understood base d on the bonding rearrangement caused by UV exposure.  相似文献   

13.
Radio frequency(RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide(Zn O) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced Zn O films are obtained via Li doping. The average deposition rate for doped Zn O films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite–Zn O. X-ray diffraction analysis demonstrates that Li doping promotes the(002) preferential orientation in Li-doped Zn O films. However, an increase in the Zn O lattice constant, broadening of the(002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2 O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped Zn O will make significant applications in future surface acoustic wave devices.  相似文献   

14.
In this work, silicon ink composing of silicon powder and zinc oxide solution was formulated and spin-coated on quartz and n/p-Si substrates followed by drying the films under atmosphere at the temperature of 550°C. The results showed that this top-addition layer could be the highly promising layer for photo-generating carriers in third-generation photovoltaics to enhance blue-light absorption. X-ray diffraction and scanning electron microscopy techniques were used to study the presence of silicon and zinc oxide nano-crystallites. The thin films consisting of different energy bandgap of Si nanocrystals(~100 nm) with narrow bandgap and spherical Zn O:Bi nanocrystal(~20 nm) with wider bandgap could be obtained from the evidence of bandgap enlargement. The band gaps of the thin films were tunable by adjusting silicon dots density in Zn O:Bi film. Energy upshift of light absorption edge depended on the silicon dots density was observed in the range 1.6–3.3 eV related band gap enlargement by Tauc plot. Under illumination, a high photocurrent gain of the thin film comprised of low Si dots density coated on a quartz substrate was about 10~3 times higher compared with its dark current. This result is agreeably explained in terms of its lower superficial trap states at the interface between silicon and zinc oxide matrix. The composite layer can be applied to a third-generation solar cell with the efficiency 1.50% higher than that with a typical crystalline-Si solar cell.  相似文献   

15.
Alternating multilayer films of hydrogen diluted hydrogenated protocrystalline silicon (pc-Si:H) were prepared using a plasma-enhanced chemical vapor deposition technique.The microstructure of the deposited films and photoresponse characteristics of their Schottky diode structures were investigated by Raman scattering spectroscopy,Fourier transform infrared spectroscopy and photocurrent spectra.Microstructure and optical absorption analyses suggest that the prepared films were pc-Si:H multilayer films with a two-phase structure of silicon nanocrystals (NCs) and its amorphous counterpart and the band gap of the films showed a decreasing trend with increasing crystalline fraction.Photocurrent measurement revealed that silicon NCs facilitate the spatial separation of photo-generated carriers,effectively reduce the non-radiative recombination rate,and induce a photoresponse peak value shift towards the short-wavelength side with increasing crystallinity.However,the carrier traps near the surface defects of silicon NCs and their spatial carrier confinement result in a significant reduction of the diode photoresponse in the longwavelength region.An enhancement of the photoresponse from 350 to 1000 nm was observed when applying an increased bias voltage in the diode,showing a favorable carrier transport and an effective collection of photo-generated carriers was achieved.Both the spatial separation of the restricted electron-hole pairs in silicon NCs and the de-trapping of the carriers at their interface defects are responsible for the red-shift in photoresponse spectra and enhancement of external quantum efficiency.The results provide fundamental data for the carrier transport control of high-efficiency pc-Si:H solar cells.  相似文献   

16.
As-extruded Mg–5Sn–1Zn–xAl alloys(x=1, 3, and 5) were fabricated by hot extrusion. The experimental results revealed that the yield strength of alloys initially decreased and then increased with the increase of Al content. These changes were mainly attributed to the difference in crystallographic texture and volume fractions of second phases. The ultimate tensile strength, yield strength, and elongation of the alloys were greater than 310 MPa, 227 MPa, and 11%, respectively. The strain hardening ability of the alloys was also discussed.  相似文献   

17.
Thin films of hydrogenated amorphous germanium (a-Ge:H) were prepared by radio frequency glow discharge deposition at various substrate temperatures. The hydrogen distribution and bonding structure in a-Ge:H were discussed based on infrared absorption data. The correlation between infrared absorption spectra and hydrogen effusion measurements was used to determine the proportionality constant for each vibration mode of the Ge-H bonds. The results reveal that the bending mode appearing at 835 cm^-1 is associated with the Ge-H2 (dihydride) groups on the internal surfaces of voids. While 1880 cm^-1 is assigned to vibrations of Ge-H (monohydride) groups in the bulk, the 2000 cm^-1 stretching mode is attributed to Ge-H and Ge-H2 bonds located on the surfaces of voids. For films associated with bending modes in the infrared spectra, the proportionality constant values of the stretching modes near 1880 and 2000 cm^-1 are found to be lower than those of films which had no correspondina bending modes.  相似文献   

18.
ZnSe nanocrystals were in-situ grown in silica gel-glasses by using sol-gel process and the reductive thermal treatment. The transparent, homogeneous ZnSe/SiO2 nanocomposites with the yellow color were first obtained. We used X-ray diffraction pattern (XRD), UV-VIS optical absorption and Raman scattering to characterize the spectrum properties of ZnSe nanocrystals. The broadening of XRD peaks, the blueshift of interband optical absorption edge and the change of Raman spectrum were observed. From these experimental results, we theoretically calculated the size of ZnSe nanocrystals. The results of XRD, optical absorption and Raman spectra were approximately consistent, with the mean diameter of about 4.6 nm. The discrepancies from different methods were discussed.  相似文献   

19.
A novel method for exfoliating graphite oxide (GrO) was implemented through the mass water absorption of a GrO–poly(ethylene glycol) (GrO–PEG) composite. The GrO–PEG composite was prepared by intercalating PEG into the lamellae of GrO, and the variation of the basal spacing was measured by X-ray diffraction analysis. The yield of graphene was measured with an ultraviolet–visible spectrophotometer, and the properties of graphene oxide (GO) were characterized by atomic force microscopy, transmission electron microscopy (TEM), Raman spectrometry, and Fourier transform infrared spectroscopy. Increasing intercalation time was found to improve the yield of GO, whereas increasing the PEG molecular weight had the opposite effect. The GO sheets produced from the intercalation–absorption–exfoliation process were found to be a four-layer structure. TEM and Raman analyses indicate that the graphitized structure and oxygen groups of GO were preserved during the exfoliation process. Most importantly, the results show that good-quality GO could be prepared via a mild method involving water absorption of a GrO–PEG composite.  相似文献   

20.
A series of TaVN–Ag nanocomposite films were deposited using a radio-frequency magnetron sputtering system. The microstructure, mechanical properties, and tribological performance of the films were investigated. The results showed that TaVN–Ag films were composed of face-centered cubic(fcc) TaVN and fcc-Ag. With increasing Ag content, the hardness of TaVN–Ag composite films first increased and then decreased rapidly. The maximum hardness value was 31.4 GPa. At room temperature, the coefficient of friction(COF) of TaVN–Ag films decreased from 0.76 to 0.60 with increasing Ag content from 0 to 7.93 at%. For the TaVN–Ag films with 7.93 at% Ag, COF first increased and then decreased rapidly from 0.60 at 25℃ to 0.35 at 600℃, whereas the wear rate of the film increased continuously from 3.91 × 10-7 to 19.1 × 10-7 mm~3/(N·mm). The COF of the TaVN–Ag film with 7.93 at% Ag was lower than that of the TaVN film, and their wear rates showed opposite trends with increasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号