首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.  相似文献   

2.
Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.  相似文献   

3.
Cultivation of the liver forms of Plasmodium vivax in human hepatocytes   总被引:1,自引:0,他引:1  
The blood schizogonic cycle of human malaria parasites has thus far been the most exhaustively studied phase of parasite development. However, before entering red blood cells (RBCs), the parasite undergoes its first multiplication not in blood, but in hepatic cells. These hepatic stages were the last to be discovered and only a few studies have been performed in humans and other primates. Despite recent advances, in vivo studies have limitations and other approaches such as cultures of these liver forms may be necessary to investigate their chemosensitivity and their biochemical or immunological properties. Recently, sporozoites of species of rodent malaria have been made to infect cultured cell lines or primary hepatocyte cultures. We report here that the complete cycle of the human malaria parasite Plasmodium vivax can be obtained in primary cultures of human hepatocytes up to release of merozoites able to penetrate RBCs.  相似文献   

4.
Singh SK  Hora R  Belrhali H  Chitnis CE  Sharma A 《Nature》2006,439(7077):741-744
Molecular processes that govern pathogenic features of erythrocyte invasion and cytoadherence in malaria are reliant on Plasmodium-specific Duffy-binding-like domains (DBLs). These cysteine-rich modules recognize diverse host cell-surface receptors during pathogenesis. DBLs of parasite erythrocyte-binding proteins mediate invasion, and those from the antigenically variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) have been implicated in cytoadherence. The simian and human malarial parasites, P. knowlesi and P. vivax, invade human erythrocytes exclusively through the host DARC receptor (Duffy antigen receptor for chemokines). Here we present the crystal structure of the P. knowlesi DBL domain (Pkalpha-DBL), which binds to DARC during invasion of human erythrocytes. Pkalpha-DBL retains the overall fold observed in DBLs from P. falciparum erythrocyte-binding antigen (EBA)-175 (ref. 4). Mapping the residues that have previously been implicated in binding highlights a fairly flat but exposed site for DARC recognition in subdomain 2 of Pkalpha-DBL; this is in sharp contrast to receptor recognition by EBA-175 (ref. 4). In Pkalpha-DBL, the residues that contact DARC and the clusters of residues under immune pressure map to opposite surfaces of the DBL, and suggest a possible mechanism for immune evasion by P. vivax. Our comparative structural analysis of Pkalpha-DBL and P. falciparum EBA-175 provides a framework for the understanding of malaria parasite DBLs, and may affect the development of new prophylactic and therapeutic strategies.  相似文献   

5.
The annotated genomes of organisms define a 'blueprint' of their possible gene products. Post-genome analyses attempt to confirm and modify the annotation and impose a sense of the spatial, temporal and developmental usage of genetic information by the organism. Here we describe a large-scale, high-accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last two groups provide insights into the biology of the sexual stages of the parasite, and include conserved, stage-specific, secreted and membrane-associated proteins. A subset of these proteins contain domains that indicate a role in cell-cell interactions, and therefore can be evaluated as potential components of a malaria vaccine formulation. We also report a set of peptides with significant matches in the parasite genome but not in the protein set predicted by computational methods.  相似文献   

6.
The malarial parasite Plasmodium vivax causes disease in humans, including chronic infections and recurrent relapses, but the course of infection is rarely fatal, unlike that caused by Plasmodium falciparum. To investigate differences in pathogenicity between P. vivax and P. falciparum, we have compared the subtelomeric domains in the DNA of these parasites. In P. falciparum, subtelomeric domains are conserved and contain ordered arrays of members of multigene families, such as var, rif and stevor, encoding virulence determinants of cytoadhesion and antigenic variation. Here we identify, through the analysis of a continuous 155,711-base-pair sequence of a P. vivax chromosome end, a multigene family called vir, which is specific to P. vivax. The vir genes are present at about 600-1,000 copies per haploid genome and encode proteins that are immunovariant in natural infections, indicating that they may have a functional role in establishing chronic infection through antigenic variation.  相似文献   

7.
Painter HJ  Morrisey JM  Mather MW  Vaidya AB 《Nature》2007,446(7131):88-91
The origin of all mitochondria can be traced to the symbiotic arrangement that resulted in the emergence of eukaryotes in a world that was exclusively populated by prokaryotes. This arrangement, however, has been in continuous genetic flux: the varying degrees of gene loss and transfer from the mitochondrial genome in different eukaryotic lineages seem to signify an ongoing 'conflict' between the host and the symbiont. Eukaryotic parasites belonging to the phylum Apicomplexa provide an excellent example to support this view. These organisms contain the smallest mitochondrial genomes known, with an organization that differs among various genera; one genus, Cryptosporidium, seems to have lost the entire mitochondrial genome. Here we show that erythrocytic stages of the human malaria parasite Plasmodium falciparum seem to maintain an active mitochondrial electron transport chain to serve just one metabolic function: regeneration of ubiquinone required as the electron acceptor for dihydroorotate dehydrogenase, an essential enzyme for pyrimidine biosynthesis. Transgenic P. falciparum parasites expressing Saccharomyces cerevisiae dihydroorotate dehydrogenase, which does not require ubiquinone as an electron acceptor, were completely resistant to inhibitors of mitochondrial electron transport. Maintenance of mitochondrial membrane potential, however, was essential in these parasites, as indicated by their hypersensitivity to proguanil, a drug that collapsed the membrane potential in the presence of electron transport inhibitors. Thus, acquisition of just one enzyme can render mitochondrial electron transport nonessential in erythrocytic stages of P. falciparum.  相似文献   

8.
9.
Plasmodium, human and Anopheles genomics and malaria   总被引:6,自引:0,他引:6  
Hoffman SL  Subramanian GM  Collins FH  Venter JC 《Nature》2002,415(6872):702-709
The Plasmodium spp. parasites that cause malaria are transmitted to humans by Anopheles spp. mosquitoes. Scientists have now amassed a great body of knowledge about the parasite, its mosquito vector and human host. Yet this year there will be 300-500 million new malaria infections and 1-3 million deaths caused by the disease. We believe that integrated analyses of genome sequence, DNA polymorphisms, and messenger RNA and protein expression profiles will lead to greater understanding of the molecular basis of vector-human and host-parasite interactions and provide strategies to build upon these insights to develop interventions to mitigate human morbidity and mortality from malaria.  相似文献   

10.
Hyman RW  Fung E  Conway A  Kurdi O  Mao J  Miranda M  Nakao B  Rowley D  Tamaki T  Wang F  Davis RW 《Nature》2002,419(6906):534-537
The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people every year. To stimulate basic research on the disease, and to promote the development of effective drugs and vaccines against the parasite, the complete genome of P. falciparum clone 3D7 has been sequenced, using a chromosome-by-chromosome shotgun strategy. Here we report the nucleotide sequence of the third largest of the parasite's 14 chromosomes, chromosome 12, which comprises about 10% of the 23-megabase genome. As the most (A + T)-rich (80.6%) genome sequenced to date, the P. falciparum genome presented severe problems during the assembly of primary sequence reads. We discuss the methodology that yielded a finished and fully contiguous sequence for chromosome 12. The biological implications of the sequence data are more thoroughly discussed in an accompanying Article (ref. 3).  相似文献   

11.
Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum   总被引:14,自引:0,他引:14  
Wootton JC  Feng X  Ferdig MT  Cooper RA  Mu J  Baruch DI  Magill AJ  Su XZ 《Nature》2002,418(6895):320-323
Widespread use of antimalarial agents can profoundly influence the evolution of the human malaria parasite Plasmodium falciparum. Recent selective sweeps for drug-resistant genotypes may have restricted the genetic diversity of this parasite, resembling effects attributed in current debates to a historic population bottleneck. Chloroquine-resistant (CQR) parasites were initially reported about 45 years ago from two foci in southeast Asia and South America, but the number of CQR founder mutations and the impact of chlorquine on parasite genomes worldwide have been difficult to evaluate. Using 342 highly polymorphic microsatellite markers from a genetic map, here we show that the level of genetic diversity varies substantially among different regions of the parasite genome, revealing extensive linkage disequilibrium surrounding the key CQR gene pfcrt and at least four CQR founder events. This disequilibrium and its decay rate in the pfcrt-flanking region are consistent with strong directional selective sweeps occurring over only approximately 20-80 sexual generations, especially a single resistant pfcrt haplotype spreading to very high frequencies throughout most of Asia and Africa. The presence of linkage disequilibrium provides a basis for mapping genes under drug selection in P. falciparum.  相似文献   

12.
Winzeler EA 《Nature》2008,455(7214):751-756
For many pathogens the availability of genome sequence, permitting genome-dependent methods of research, can partially substitute for powerful forward genetic methods (genome-independent) that have advanced model organism research for decades. In 2002 the genome sequence of Plasmodium falciparum, the parasite causing the most severe type of human malaria, was completed, eliminating many of the barriers to performing state-of-the-art molecular biological research on malaria parasites. Although new, licensed therapies may not yet have resulted from genome-dependent experiments, they have produced a wealth of new observations about the basic biology of malaria parasites, and it is likely that these will eventually lead to new therapeutic approaches. This review will focus on the basic research discoveries that have depended, in part, on the availability of the Plasmodium genome sequences.  相似文献   

13.
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.  相似文献   

14.
Plasmodium falciparum causes malaria infections in its human host. Its wide distribution in tropical countries is a major world health problem. Before a vaccine can be produced, the identification and characterization of parasite antigens is necessary. This can be achieved by the cloning and subsequent analysis of genes coding for parasite antigens. Recently established cDNA banks allow the expression of cDNA derived from the simian parasite Plasmodium knowlesi and P. falciparum in Escherichia coli. Recombinants encoding parasite antigens have been identified by immunodetection in both banks. Two of them contain repetitive units of 11 (ref. 7) or 12 (ref. 5) amino acids. We describe here the construction of an expression bank made directly from randomly generated fragments of P. falciparum genomic DNA. We detect several clones which react strongly with human African immune sera. One clone expresses an antigenic determinant composed of occasionally degenerated repeats of a peptide nonamer.  相似文献   

15.
Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3-9 and 13 of P. falciparum clone 3D7--these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.  相似文献   

16.
17.
Preiser PR  Jarra W  Capiod T  Snounou G 《Nature》1999,398(6728):618-622
The recognition and invasion of host cells are mediated by components of the apical complex of the ookinete, sporozoite and merozoite stages of Plasmodium parasites. The paired rhoptries (organelles involved in host-cell recognition) in the apical complex contain many proteins of as-yet unknown function. In the rodent malaria agent P. yoelii yoelii, a multigene family codes for merozoite rhoptry proteins of relative molecular mass 235,000 (p235 proteins); these proteins are thought to determine the subset of erythrocytes that the parasites invade. Further support for this idea came from the identification of a region in p235 with weak but significant homology to reticulocyte-binding protein-2 of P. vivax and the demonstration that at least one p235 member binds to the erythrocyte surface membrane. Here, using single, micromanipulated P.y.yoelii parasites, we describe a new mechanism of gene expression by which the merozoites originating from a single schizont each express a distinct member of this multigene family. We propose that this new type of clonal phenotypic variation provides the parasite with a survival strategy in the mammalian host; this strategy contributes to the observed chronicity of malarial infections. This phenomenon is genetically and functionally distinct from classical antigenic variation, which is mediated by the var multigene family of P. falciparum.  相似文献   

18.
A F Slater  A Cerami 《Nature》1992,355(6356):167-169
The incidence of human malaria has increased during the past 20 years; 270 million people are now estimated to be infected with the parasite. An important contribution to this increase has been the appearance of malaria organisms resistant to quinoline-containing antimalarials such as chloroquine and quinine. These drugs accumulate in the acid food vacuoles of the intraerythrocytic-stage malaria parasite, although the mechanism of their specific toxicity in this organelle is uncertain. The primary function of the food vacuole is the proteolysis of ingested red cell haemoglobin to provide the growing parasite with essential amino acids. Haemoglobin breakdown in the food vacuole releases haem, which if soluble can damage biological membranes and inhibit a variety of enzymes. Rather than degrading or excreting the haem, the parasite has evolved a novel pathway for its detoxification by incorporating it into an insoluble crystalline material called haemozoin or malaria pigment. These crystals form in the food vacuole of the parasite concomitant with haemoglobin degradation, where they remain until the infected red cell bursts. The structure of haemozoin comprises a polymer of haems linked between the central ferric ion of one haem and a carboxylate side-group oxygen of another. This structure does not form spontaneously from either free haem or haemoglobin under physiological conditions, and the biochemistry of its formation is unclear. Here we report the identification and characterization of a haem polymerase enzyme activity from extracts of Plasmodium falciparum trophozoites, and show that this enzyme is inhibited by quinoline-containing drugs such as chloroquine and quinine. This provides a possible explanation for the highly stage-specific antimalarial properties of these drugs.  相似文献   

19.
Mu J  Duan J  Makova KD  Joy DA  Huynh CQ  Branch OH  Li WH  Su XZ 《Nature》2002,418(6895):323-326
The Malaria's Eve hypothesis, proposing a severe recent population bottleneck (about 3,000-5,000 years ago) of the human malaria parasite Plasmodium falciparum, has prompted a debate about the origin and evolution of the parasite. The hypothesis implies that the parasite population is relatively homogeneous, favouring malaria control measures. Other studies, however, suggested an ancient origin and large effective population size. To test the hypothesis, we analysed single nucleotide polymorphisms (SNPs) from 204 genes on chromosome 3 of P. falciparum. We have identified 403 polymorphic sites, including 238 SNPs and 165 microsatellites, from five parasite clones, establishing chromosome-wide haplotypes and a dense map with one polymorphic marker per approximately 2.3 kilobases. On the basis of synonymous SNPs and non-coding SNPs, we estimate the time to the most recent common ancestor to be approximately 100,000-180,000 years, significantly older than the proposed bottleneck. Our estimated divergence time coincides approximately with the start of human population expansion, and is consistent with a genetically complex organism able to evade host immunity and other antimalarial efforts.  相似文献   

20.
Stable germline transformation of the malaria mosquito Anopheles stephensi   总被引:8,自引:0,他引:8  
Anopheline mosquito species are obligatory vectors for human malaria, an infectious disease that affects hundreds of millions of people living in tropical and subtropical countries. The lack of a suitable gene transfer technology for these mosquitoes has hampered the molecular genetic analysis of their physiology, including the molecular interactions between the vector and the malaria parasite. Here we show that a transposon, based on the Minos element and bearing exogenous DNA, can integrate efficiently and stably into the germ line of the human malaria vector Anopheles stephensi, through a transposase-mediated process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号