首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为了探究典型“2+26”传输通道城市之一的新乡市PM2.5中碳质气溶胶的污染水平、季节分布及来源特征,于2019年7月至2020年4月在河南师范大学采集PM2.5样品,采用热/光碳分析仪测定了8种碳组分质量浓度.结果显示,新乡市PM2.5年均质量浓度为(66.25±35.73)μg·m-3,TCA(Total Carbonaceous Aerosol)/PM2.5质量浓度比年均为(25.16±6.93)%,说明新乡市碳组分污染较为严重.碳组分具有显著的季节变化特征,冬季OC(Organic Carbon)和EC(Elemental Carbon)的质量浓度分别为(13.50±6.43)μg·m-3和(5.67±2.32)μg·m-3,明显高于其他季节,说明冬季污染较为严重.SOC(Secondary Organic Carbon)/OC质量浓度比值夏季最高(49.37±17.73)%,冬季最低(39.06±15.83)%.OC和EC的...  相似文献   

2.
天津武清冬季PM2.5含碳组分的逐时观测及分析   总被引:1,自引:0,他引:1  
为了解京津冀地区冬季气溶胶含碳组分浓度及变化特征, 2011年12月至2012年1月在天津市武清区针对PM2.5中元素碳(EC)、有机碳(OC)、水溶性有机碳(WSOC)及水溶性离子组分进行实时半在线的逐时浓度综合观测。观测期间EC和OC的平均浓度分别为6.0±4.8和21.5±19.2 μg C/m3, 分别占PM2.5观测组分总浓度平均值的8%和30%。WSOC平均浓度为14.3±11.8 μg C/m3, 占平均OC浓度的67%。观测期间, 污染物浓度的大幅变化主要受气象条件控制, OC, EC和WSOC日变化特征相对不显著。观测期间大部分时间OC/EC比值稳定, OC/EC平均值为3.9。通过含碳组分与其他示踪组分的相关性分析, 初步判定武清冬季的气溶胶含碳组分主要来自生物质燃烧的一次性排放, 且影响当地的气团经过明显老化过程。约一半的OC来自一次生物质燃烧排放, 另一半来自二次生成。  相似文献   

3.
采用气态污染物与气溶胶在线测量装置(GAC), 于2014年夏季对保定市望都县大气PM2.5中水溶性无机盐及其相关气态污染物进行为期30余天的在线测量。结果表明: 观测期间站点为富氨环境,PM2.5平均质量浓度为68.2 μg/m3, GAC测得的SO42-, NO3-, Cl-, NH4+ 和K+分别是12.6, 8.5, 1.4, 11.7 和0.7 μg/m3, 占PM2.5总组分的51%。上述观测参数均呈现明显的日变化:SO2, SO42-, NO3-, NH4+ 和Cl-均在早晨出现峰值, HCl 和HNO3的峰值出现在下午, 而NH3主要呈现昼夜变化。硫氧化速率(SOR)和氮氧化速率(NOR)的分析结果表明站点大气存在较强烈的二次转化过程, SOR和NOR的平均值分别为0.43 和0.22。SOR与NOR的变化特征显示, 气相氧化和液相反应均对颗粒物无机盐二次转化速率有显著贡献。  相似文献   

4.
利用2016—2018年冬季济南市大气主要污染物和气象监测数据,对大气污染特征及潜在源区进行分析。结果表明:2016—2018年冬季济南市环境空气中可吸入颗粒物PM10和细颗粒物PM2.5分别占首要污染物的34.7%和63.8%,轻度污染以上天数占总天数的58.6%,冬季高质量浓度PM2.5导致年均值增加7.5μg/m3;从空间分布来看,PM10与PM2.5空间分布为天桥区、槐荫区及平阴县质量浓度较高,SO2则为商河县和济阳区质量浓度偏高,NO2和CO为济阳区、天桥区和槐荫区质量浓度较高;研究期间NO2、CO、PM10、PM2.5的质量浓度呈正相关性,相关系数均在0.7以上,推断交通源、工业燃烧源、燃煤是颗粒物的主要来源;济南市冬季的气团输送为偏南、西北、偏北和偏东4个方向,偏南和偏东气团为影响济南市冬季大气污染主要输送路径。进一步研究潜在源区贡献...  相似文献   

5.
西安市秋季大气颗粒物散射特征及其影响因素   总被引:2,自引:0,他引:2  
 为研究污染条件下西安市秋季大气颗粒物的散射特征及其影响因素, 于2012 年11 月监测大气颗粒物散射系数并采集PM2.5样品。探讨了大气颗粒物的散射日变化特征, 通过实验分析PM2.5中水溶性离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO3-和SO42-)和含碳物质(有机碳和元素碳)的污染水平, 并讨论它们的来源及对散射系数的影响。结果表明, 颗粒物的散射系数均值为(579±387)Mm-1, 夜间高日间低。PM2.5质量浓度与散射系数呈现出较强的线性关系(相关系数为0.85), 通过回归方程得到PM2.5散射效率为3.09 m2·g-1。在PM2.5化学组分中, 有机物对消光系数的贡献最大, 占52.3%;其次是NH4NO3和(NH4)2SO4, 贡献率分别为16.2%和13.7%。  相似文献   

6.
广州地区大气可吸入颗粒物的化学特征及来源解析   总被引:9,自引:0,他引:9  
在广州市区及其附近地区设立了7个采样站点采集大气可吸入颗粒物(PM10)样品,分析了17种元素(Na,Mg,Al,K,Ca,Ti,V,Mn,Fe,Ni,Cu,Zn,As,Se ,C d,Ba和Pb),5种离子(SO2-,NO-,F-,Cl-和NH4+)以 及元素碳(EC)和有机碳(OC )的含量,讨论了PM10的化学组分特征以及气象条件对主要污染物的影响,并在此基 础上应 用主因子分析法对PM_10的主要来源进行解析。研究期间广州地区大气PM_10平均 浓度为125.8μg/m3,各地PM10最主要的化学组分为有机物、SO2-和地壳元素组分,分别占PM_10质量浓度的24%~32%,17%~21%和10%~12%。通过 主因子分析法确定广州地区PMPM10的主要污染源 是地面扬尘、燃油排放、冶金化工及电子加工排放、燃煤、二次转化和生物质燃烧,其方差 贡献率分别为20.7%,17.8%,16.3%,14.3%,10.4%和6.3%。  相似文献   

7.
为研究济南市冬季大气重污染过程特征,以2020年12月8日—13日发生的一次典型大气重污染过程为例,从污染过程、气象条件、细颗粒物化学组分等角度综合分析此次重污染过程的特征和成因。结果表明,此次重污染过程期间首要污染物均为PM2.5,其平均质量浓度为137 μg/m3,11日21时达到此次污染峰值,PM2.5质量浓度高达为235 μg/m3。重污染期间高空环流较为平直;低层850 hPa受西南气流影响,有利于逆温层结的形成;地面均压场控制,平流雾、辐射雾交替产生。静稳气象条件使得PM2.5质量浓度累积及高湿状态下颗粒物二次转化增强。观测期间,二次离子(SNA= $SO^{2-}_{4}$ + $NO^{-}_{3}$ + $NH^{+}_{4}$) 质量浓度为85.4 μg/m3,占PM2.5质量浓度的52.0%。硫转化率(RS)和氮氧化率(RN)均值分别为0.44和0.33,大气中SO2和NO2的二次氧化程度较高;RS高于RN,表明污染期间二次$SO^{2-}_{4}$的二次转化效率高于 $NO^{-}_{3}$$\rho_{NO^{-}_{3}}$ / $\rho_{SO^{2-}_{4}}$平均值为2.1,表明移动源对PM2.5污染的贡献占主导地位。有机碳和元素碳浓度的平均比值为6.5,可见本次重污染期间济南市大气中存在二次有机碳(SOC)污染。采用有机碳和元素碳比值(ρOCEC)最小比值法估算得到重污染期间一次有机碳浓度和二次有机碳浓度分别为11.9 μg/m3、4.3 μg/m3,表明一次燃烧源对污染过程有较大贡献。  相似文献   

8.
为研究长春市冬季和春季大气PM2.5的主要来源及污染特征, 于2018-01-06—2018-05-14连续采集PM2.5环境受体样品, 分析其无机元素及水溶性阴离子组分. 结果表明: 采样期间长春市PM2.5的质量浓度为(46.4±24.4)μg/m3, 冬季和春季的平均质量浓度分别为(51.0±25.8)μg/m3和(32.6±11.5)μg/m3, 超标率为11%, 均在冬季超标, 在春节假期中(2018-02-15—2018-02-21), PM2.5的质量浓度低且保持平稳; 所测全部水溶性阴离子及部分无机元素(Al,As,Pb,Se,Ti)质量浓度呈冬季高于春季的趋势; 长春市无机元素主要源于燃煤、 交通和扬尘; 长春市PM2.5中NO-3和SO2-4是燃煤和机动车尾气共同作用的结果, 其中燃煤源的贡献率相对较高; 长春市冬春季PM2.5主要来源为二次源(28.2%)、土壤尘源(12.6%)、交通排放源(10.7%)、燃煤源和建筑尘源(28.6%)、工业源和其他源(19.8%).  相似文献   

9.
 为探讨春季沙尘(暴)期间兰州大学半干旱气候与环境观测站(SACOL)碳气溶胶的变化特征, 2012 年5 月17-26 日于SACOL 站采用石英膜收集PM10样品, 利用DRI-2001A 热/光碳分析仪测量元素碳(EC)和有机碳(OC)的质量浓度。结果显示, 沙尘(暴)是导致OC、EC 质量浓度增大的主要因素。采样期间EC、OC 和总碳(TC)的平均质量浓度分别为2.71、11.26 和13.97 μg/m3。进一步分析显示, 沙尘(暴)期间兰州城区碳气溶胶污染逐渐加重主要受本地源的影响。PM10中OC 和EC 的相关系数达到0.94, 揭示SACOL 站OC、EC 的来源相对一致。OC/EC 的均值为5.05, 表明春季SACOL 站PM10中碳气溶胶存在二次污染。二次有机碳(SOC)的质量浓度为3.37 μg/m3, 为OC 的29.9%。结合考察周边环境, 分析表明SACOL 站春季碳气溶胶的主要来源是直接污染源, 来自周边环境中的燃煤以及机动车尾气排放。对碳气溶胶8 种组分的因子分析结果也表明, 周边环境的燃煤和机动车尾气排放是春季SACOL 站碳气溶胶的主要贡献源。  相似文献   

10.
黄刚 《长沙大学学报》2023,(2):60-65+87
探寻长沙某区域内的大气污染成因,为该区域大气污染预警与控制提供理论依据。以该区域内大气中PM2.5、PM10、O3、NO2、SO2、CO、有机污染物等污染因子为研究对象,以各污染因子浓度与组成在2021年3月至2022年2月的监测数据为依据,通过污染因子与影响因素之间的关联性分析,确定该区域内各污染因子的形成原因。结果显示:该区域内PM2.5年均浓度为40μg/m3、PM10年均浓度为43μg/m3,大气颗粒污染物主要由工地扬尘、非道路移动机械、机动车尾气以及燃烧源共同引起;大气有机物污染主要是由机动车尾气排放、有机溶剂挥发以及化石燃料燃烧产生。通过对臭氧生成潜势进行分析发现,芳香烃类物质贡献最大,占比60.8%,其次为烯烃类物质,占比为22.9%,这表明该区域臭氧浓度受溶剂涂料使用工序影响较大。  相似文献   

11.
北京市冬季PM2.5中碳组分的测量与分析   总被引:7,自引:0,他引:7  
使用两台较先进的仪器,Aethalometer和Sunset碳分析仪(TOT),同时同地检测北京大气PM2.5的碳组分。实验发现:两台仪器的监测结果有较好的线性相关性和一致性(R2=0.80);EC(Elemental Carbon)和OC(Organic Carbon)有较好的线性相关性(R2=0.82);OC/EC的比值白天较夜间高、正常天气较逆温天气较高、逆温天气下白天与夜间差别不大,OC/EC平均值约4.76;并分析了用OC/EC的比值大于2判断是否存在二次污染的片面性。  相似文献   

12.
为研究道路扬尘PM2.5碳组分的污染特征及其来源,于2018年4月采集锦州市道路扬尘样品,通过再悬浮采样器得到PM2.5滤膜样品,再利用热光碳分析仪测定PM2.5样品中OC(有机碳)和EC(元素碳),并分析其特征及来源.结果表明,PM2.5中ω(TC)为10.52%(支路)-19.05%(主干道),ω(OC)为8.89%(支路)-15.99%(主干道),ω(EC)为1.63%(支路)-4.63%(次干道),ω(OC)明显高于ω(EC);OC/EC比值均大于2,说明锦州市道路扬尘PM2.5可能存在二次污染.Spearman相关分析结果表明,锦州市道路扬尘PM2.5中OC、EC来源相近或相同;聚类分析结果表明,锦州市道路扬尘PM2.5中碳组分主要来源于柴油车与汽油车尾气的排放,以及生物质燃烧与煤炭燃烧的排放.  相似文献   

13.
采用长光程差分吸收光谱系统对合肥市高新区大气SO2,O3,NO2进行连续观测,分析气体污染特征和可能存在的污染源.日变化显示,夜间SO2质量浓度较高,日间质量浓度低.NO2呈单峰单谷型,交通晚高峰对NO2质量浓度有一定影响,全日质量浓度持续偏高(35~45μg/m3)且变化较小,存在其他重要的氮氧化物排放源.O3有明显的日变化,日间质量浓度高,在午后16:00出现最大值;夜间质量浓度低,凌晨出现最低值.冬季大气边界层低,不利于污染扩散,NO2和SO2质量浓度保持较高水平,而夏季光解反应剧烈,湿沉降明显,污染物质量浓度较低,O3质量浓度表现为春夏季高于秋冬季.污染源分析表明,SO2高值主要与观测点西北面农村居民生活燃煤及东南侧制药公司和涂料厂的无组织排放有关.低风速下NO2高质量浓度受观测点附近望江西路的机...  相似文献   

14.
为了研究对比北京、伊斯兰堡冬季PM10中重金属、水溶性无机离子以及碳组分的污染特征,于2014年12月—2015年1月分别在两地每天采集1次PM10样品,对大气颗粒物中以上3种物质的质量浓度进行了分析。结果表明,两地PM10中重金属污染情况较为严重,北京地区的As、Cr(Ⅵ)以及伊斯兰堡的Cd、Cr(Ⅵ)均超过WHO标准。根据主成分分析,北京重金属主要排放源为燃煤和移动源,而伊斯兰堡主要为移动源。两地颗粒物中水溶性无机离子二次污染情况较为严重,在霾天浓度也同样会上升,虽然污染程度不同,但造成霾天污染的一个重要原因均为机动车等移动源。对于碳组分,北京OC、EC线性关系较好(特别是在非霾天),说明其来源比较相似和简单,在排放后被类似的过程所控制,主要为煤炭燃烧和汽车排放;而伊斯兰堡OC、EC线性关系较差,在非霾天甚至出现负相关,说明其来源差别较大,主要为汽车排放。北京地区在研究期间SOC的质量浓度为2.58 μg/m3,仅占OC质量浓度的10.1%,而伊斯兰堡基本没有SOC的生成。  相似文献   

15.
为了探究近年来秦皇岛市大气中PM2.5污染特征和影响因素,通过采集冬季重污染时段城区和开发区PM2.5样品,使用等离子体发射光谱仪和气相色谱-质谱仪,分别测定城区样品中6种元素(Cu,Pb,Zn,Cr,Ni,Cd)和PAHs.结果表明,秦皇岛城区PM2.5日平均质量浓度186μg/m3,开发区平均质量浓度为118.88μg/m3,城区PM2.5中各重金属元素的浓度水平排序为Zn>Pb>Ni>Cr>Cu>Cd,其中Cd为强-极强污染,Pb为中-强污染,Zn属于中等污染,Ni,Cu,Cr等其他元素基本无污染.PM2.5中定性的检测到奈(Nap)、菲(Phe)、荧蒽(Fla)、芘(Pyr)、苯并(k)荧蒽(BkF)等单体.PM2.5日浓度与风速具有显著的负相关性,与相对湿度呈正相关性.  相似文献   

16.
 以西安市冬季某研究生高层公寓为监测对象, 通过1 min 时间间隔同步监测, 研究了不同楼层室内外空气中颗粒物PM1、PM2.5、PM10以及总悬浮颗粒物TSP 的质量浓度、分布状况与变化特征。结果表明, 西安市冬季高层公寓存在严重的颗粒物污染, 室内粗颗粒物PM10质量浓度为(65.5±20.0)~(142.0±16.9)μg/m3, 略低于室内空气质量标准, 但室内细颗粒物PM2.5及超细颗粒物PM1分别为(52.2±14.3)~(111.5±12.2)μg/m3和(50.6±13.9)~(108.7±11.9)μg/m3, 其中PM2.5质量浓度占总悬浮颗粒物TSP 的50%以上;室外以粗颗粒物PM10为主, 楼层高度与颗粒物质量浓度之间无显著关联。  相似文献   

17.
利用酸雨监测点2016-2022年的监测数据,分析酸雨变化趋势。结果表明:2016-2022年佛山市禅城区酸雨主要为弱酸性酸雨,降水pH值逐年上升,而酸雨频率逐年下降,酸雨污染整体呈减轻趋势,春、夏季酸雨污染较重,秋、冬季相对较轻,NO3-和SO42-是降水致酸的关键性离子,降水SO42-/NO3-呈逐年下降的趋势,酸雨污染类型从硫酸型过渡到硫酸-硝酸混合型逐渐向硝酸型转变,NO3-对降水影响更加明显。  相似文献   

18.
为探明黄土高原沟谷内城市高可吸入颗粒物(PM10)污染的可能原因,选择山西省柳林县城区作为代表性城市,对2018-2019年间大气污染物的浓度、变化规律、特征比值和雷达图等进行了分析,并研究了夏冬两季PM10的化学组成特征。结果表明:研究区域PM10年均质量浓度(166.33μg/m3)和其作为首要污染物在全年出现的天数占比(53.14%)均高于国内很多城市;PM10以粗颗粒物为主,被测元素中有86.02%为地壳元素,冬季受燃煤影响有机质(OM)占比大于夏季而元素碳(EC)占比小于夏季;雨后PM10浓度出现增长现象。以上结果提示,城市两侧山坡裸露地表颗粒物的干湿输送和城内机动车的扰动是引起春夏两季PM10污染的主要因素,秋季受自然源和人为源的双重控制,冬季受居民散煤燃烧控制。  相似文献   

19.
沿海城市的PM2.5和臭氧除受排放源、天气条件影响以外,还往往同时受城市热岛环流和海陆风环流的双重影响.利用2015年杭州市气象和环境监测数据以及数值模式RBLM-Chem,分析研究了杭州市在陆风天气、海风天气和海陆风三种环流条件下污染物浓度特征及城市效应对其的影响.得到了以下主要结论:海风使杭州市污染物浓度增大,在观测数据中PM2.5浓度和臭氧浓度分别最大增高了10.9μg·m-3和12.0μg·m-3,在模拟结果中相比于陆风天气型,海陆风天气型的PM2.5浓度和臭氧浓度分别增大13.1μg·m-3和18.9μg·m-3;相比于海风天气型,海陆风天气型的PM2.5浓度和臭氧浓度分别减小24.1μg·m-3和11.6μg·m-3.城市效应导致杭州市边界层高度增加63.8 m,地面风速减小0.99 m·s-1,地面气温增高1.14℃,PM2...  相似文献   

20.
为探究武汉市疫情管控期间的空气质量状况,将管控时期(2020.01.24—2020.04.08)的AQI (air quality index)、水溶性无机离子(NO3-, NH4+, SO42-, C1-, K+, Ca2+, Na+, Mg2+)浓度均值与近6年相同时段的相应数据进行统计对比分析;以旬期为时间尺度,运用相关性分析法着重探讨管控期间AQI、水溶性无机离子与气象因素之间的关系.结果表明,管控期间空气质量较往年同时段好,优良率达到98.7%,首要污染物主要为PM2.5和O3-8 h. NO3-、SO42-、NH4+为管控以及历年相同期间水溶性无机离子的重要组分,管控期间NO3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号