首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PAX6 is widely expressed in the central nervous system. Heterozygous PAX6 mutations in human aniridia cause defects that would seem to be confined to the eye. Magnetic resonance imaging (MRI) and smell testing reveal the absence or hypoplasia of the anterior commissure and reduced olfaction in a large proportion of aniridia cases, which shows that PAX6 haploinsuffiency causes more widespread human neuro developmental anomalies.  相似文献   

2.
The human PAX6 gene is mutated in two patients with aniridia.   总被引:17,自引:0,他引:17  
Aniridia is an inherited ocular disorder of variable expressivity characterized by iris hypoplasia. A candidate aniridia gene, AN, which is the human homologue of the mouse Pax-6 gene, has recently been isolated by positional cloning from the WAGR region of 11p13. Here we describe mutations in this gene in two cases of sporadic aniridia, one detected at the DNA level and one at the RNA level, both of which are predicted to affect protein function. Mutations in Pax-6 have been described previously in Small eye, the proposed mouse model for aniridia. We present new phenotypic evidence for the validity of this mouse model.  相似文献   

3.
4.
Experiments involving overexpression of Ski have suggested that this gene is involved in neural tube development and muscle differentiation. In agreement with these findings, Ski-/- mice display a cranial neural tube defect that results in exencephaly and a marked reduction in skeletal muscle mass. Here we show that the penetrance and expressivity of the phenotype changes when the null mutation is backcrossed into the C57BL6/J background, with the principal change involving a switch from a neural tube defect to midline facial clefting. Other defects, including depressed nasal bridge, eye abnormalities, skeletal muscle defects and digit abnormalities, show increased penetrance in the C57BL6/J background. These phenotypes are interesting because they resemble some of the features observed in individuals diagnosed with 1p36 deletion syndrome, a disorder caused by monosomy of the short arm of human chromosome 1p (refs. 6-9). These similarities prompted us to re-examine the chromosomal location of human SKI and to determine whether SKI is included in the deletions of 1p36. We found that human SKI is located at distal 1p36.3 and is deleted in all of the individuals tested so far who have this syndrome. Thus, SKI may contribute to some of the phenotypes common in 1p36 deletion syndrome, and particularly to facial clefting.  相似文献   

5.
Splotch is considered a model of Waardenburg syndrome type I (WSI) because the abnormalities are caused by mutations in homologous genes, Pax-3 in mice and PAX3 (HuP2) in humans. We examined inner ear structure and function in Splotch mutants (Sp/+) and found no sign of auditory defects, in contrast to the deafness in many WSI individuals. The difference in expression of the genes in the two species may be due to different parts of the gene being mutated, or may result from variations in modifying influences as yet undefined.  相似文献   

6.
Haploinsufficiency for human EYA1, a homologue of the Drosophila melanogaster gene eyes absent (eya), results in the dominantly inherited disorders branchio-oto-renal (BOR) syndrome and branchio-oto (BO) syndrome, which are characterized by craniofacial abnormalities and hearing loss with (BOR) or without (BO) kidney defects. To understand the developmental pathogenesis of organs affected in these syndromes, we inactivated the gene Eya1 in mice. Eya1 heterozygotes show renal abnormalities and a conductive hearing loss similar to BOR syndrome, whereas Eya1 homozygotes lack ears and kidneys due to defective inductive tissue interactions and apoptotic regression of the organ primordia. Inner ear development in Eya1 homozygotes arrests at the otic vesicle stage and all components of the inner ear and specific cranial sensory ganglia fail to form. In the kidney, Eya1 homozygosity results in an absence of ureteric bud outgrowth and a subsequent failure of metanephric induction. Gdnf expression, which is required to direct ureteric bud outgrowth via activation of the c-ret Rtk (refs 5, 6, 7, 8), is not detected in Eya1-/- metanephric mesenchyme. In Eya1-/- ear and kidney development, Six but not Pax expression is Eya1 dependent, similar to a genetic pathway elucidated in the Drosophila eye imaginal disc. Our results indicate that Eya1 controls critical early inductive signalling events involved in ear and kidney formation and integrate Eya1 into the genetic regulatory cascade controlling kidney formation upstream of Gdnf. In addition, our results suggest that an evolutionarily conserved Pax-Eya-Six regulatory hierarchy is used in mammalian ear and kidney development.  相似文献   

7.
The epidermis is a highly organized structure, the integrity of which is central to the protection of an organism. Development and subsequent maintenance of this tissue depends critically on the intricate balance between proliferation and differentiation of a resident stem cell population; however, the signals controlling the proliferation-differentiation switch in vivo remain elusive. Here, we show that mice carrying a homozygous missense mutation in interferon regulatory factor 6 (Irf6), the homolog of the gene mutated in the human congenital disorders Van der Woude syndrome and popliteal pterygium syndrome, have a hyperproliferative epidermis that fails to undergo terminal differentiation, resulting in soft tissue fusions. We further demonstrate that mice that are compound heterozygotes for mutations in Irf6 and the gene encoding the cell cycle regulator protein stratifin (Sfn; also known as 14-3-3sigma) show similar defects of keratinizing epithelia. Our results indicate that Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch and that Irf6 and Sfn interact genetically in this process.  相似文献   

8.
Control of neurulation by the nucleosome assembly protein-1-like 2   总被引:1,自引:0,他引:1  
Neurulation is a complex process of histogenesis involving the precise temporal and spatial organization of gene expression. Genes influencing neurulation include proneural genes determining primary cell fate, neurogenic genes involved in lateral inhibition pathways and genes controlling the frequency of mitotic events. This is reflected in the aetiology and genetics of human and mouse neural tube defects, which are of both multifactorial and multigenic origin. The X-linked gene Nap1l2, specifically expressed in neurons, encodes a protein that is highly similar to the nucleosome assembly (NAP) and SET proteins. We inactivated Nap1l2 in mice by gene targeting, leading to embryonic lethality from mid-gestation onwards. Surviving mutant chimaeric embryos showed extensive surface ectoderm defects as well as the presence of open neural tubes and exposed brains similar to those observed in human spina bifida and anencephaly. These defects correlated with an overproduction of neuronal precursor cells. Protein expression studies showed that the Nap1l2 protein binds to condensing chromatin during S phase and in apoptotic cells, but remained cytoplasmic during G1 phase. Nap1l2 therefore likely represents a class of tissue-specific factors interacting with chromatin to regulate neuronal cell proliferation.  相似文献   

9.
Fibrogenesis or scarring of the liver is a common consequence of all chronic liver diseases. Here we refine a quantitative trait locus that confers susceptibility to hepatic fibrosis by in silico mapping and show, using congenic mice and transgenesis with recombined artificial chromosomes, that the gene Hc (encoding complement factor C5) underlies this locus. Small molecule inhibitors of the C5a receptor had antifibrotic effects in vivo, and common haplotype-tagging polymorphisms of the human gene C5 were associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse quantitative trait gene led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that C5 has a causal role in fibrogenesis across species.  相似文献   

10.
Niwa N  Hiromi Y  Okabe M 《Nature genetics》2004,36(3):293-297
Different sensory organs, such the eye and ear, are widely thought to have separate origins, guided by distinct organ-specific factors that direct all aspects of their development. Previous studies of the D. melanogaster gene eyeless (ey) and its vertebrate homolog Pax6 suggested that this gene acts in such a manner and specifically drives eye development. But diverse sensory organs might instead arise by segment-specific modification of a developmental program that is involved more generally in sensory organ formation. In D. melanogaster, a common proneural gene called atonal (ato) functions in the initial process of development of a number of segment-specific organs, including the compound eye, the auditory organ and the stretch receptor, suggesting that these organs share an evolutionary origin. Here we show that D. melanogaster segment-specific sensory organs form through the integration of decapentaplegic (dpp), wingless (wg) and ecdysone signals into a single cis-regulatory element of ato. The induction of ectopic eyes by ey also depends on these signals for ato expression, and the ey mutant eye imaginal disc allows ato expression if cell death is blocked. These results imply that ey does not induce the entire eye morphogenetic program but rather modifies ato-dependent neuronal development. Our findings strongly suggest that various sensory organs evolved from an ato-dependent protosensory organ through segment specification by ey and Hox genes.  相似文献   

11.
The murine Elo (eye lens obsolescence) mutation confers a dominant phenotype characterized by malformation of the eye lens. The mutation maps to chromosome 1, in close proximity to the gamma E-crystallin gene which is the 3'-most member of the gamma-crystallin gene cluster. We have analysed the sequence of this gene from the Elo mouse and identified a single nucleotide deletion which destroys the fourth and last "Greek key" motif of the protein. This mutation is tightly associated with the phenotype, as no recombination was detected in 274 meioses. In addition, the mutant mRNA is present in the affected lens, providing further support for our hypothesis that the deletion is responsible for the dominant Elo phenotype.  相似文献   

12.
Spondylocostal dysostosis (SD, MIM 277300) is a group of vertebral malsegmentation syndromes with reduced stature resulting from axial skeletal defects. SD is characterized by multiple hemivertebrae, rib fusions and deletions with a non-progressive kyphoscoliosis. Cases may be sporadic or familial, with both autosomal dominant and autosomal recessive modes of inheritance reported. Autosomal recessive SD maps to a 7.8-cM interval on chromosome 19q13.1-q13.3 that is homologous with a mouse region containing a gene encoding the Notch ligand delta-like 3 (Dll3). Dll3 is mutated in the X-ray-induced mouse mutant pudgy (pu), causing a variety of vertebrocostal defects similar to SD phenotypes. Here we have cloned and sequenced human DLL3 to evaluate it as a candidate gene for SD and identified mutations in three autosomal recessive SD families. Two of the mutations predict truncations within conserved extracellular domains. The third is a missense mutation in a highly conserved glycine residue of the fifth epidermal growth factor (EGF) repeat, which has revealed an important functional role for this domain. These represent the first mutations in a human Delta homologue, thus highlighting the critical role of the Notch signalling pathway and its components in patterning the mammalian axial  相似文献   

13.
Prader-Willi syndrome (PWS) is associated with paternal gene deficiencies in human chromosome 15q11-13, suggesting that PWS is caused by a deficiency in one or more maternally imprinted genes. We have now mapped a gene, Snrpn, encoding a brain-enriched small nuclear ribonucleoprotein (snRNP)-associated polypeptide SmN, to mouse chromosome 7 in a region of homology with human chromosome 15q11-13 and demonstrated that Snrpn is a maternally imprinted gene in mouse. These studies, in combination with the accompanying human mapping studies showing that SNRPN maps in the Prader-Willi critical region, identify SNRPN as a candidate gene involved in PWS and suggest that PWS may be caused, in part, by defects in mRNA processing.  相似文献   

14.
Heterozygous TGFBR2 mutations in Marfan syndrome   总被引:24,自引:0,他引:24  
Marfan syndrome is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton and cardiovascular systems associated with defects in the gene encoding fibrillin (FBN1) at 15q21.1 (ref. 1). A second type of the disorder (Marfan syndrome type 2; OMIM 154705) is associated with a second locus, MFS2, at 3p25-p24.2 in a large French family (family MS1). Identification of a 3p24.1 chromosomal breakpoint disrupting the gene encoding TGF-beta receptor 2 (TGFBR2) in a Japanese individual with Marfan syndrome led us to consider TGFBR2 as the gene underlying association with Marfan syndrome at the MSF2 locus. The mutation 1524G-->A in TGFBR2 (causing the synonymous amino acid substitution Q508Q) resulted in abnormal splicing and segregated with MFS2 in family MS1. We identified three other missense mutations in four unrelated probands, which led to loss of function of TGF-beta signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor-suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders.  相似文献   

15.
16.
17.
Isolated human microphthalmia/anophthalmia, a cause of congenital blindness, is a clinically and genetically heterogeneous developmental disorder characterized by a small eye and other ocular abnormalities. Three microphthalmia/anophthalmia loci have been identified, and two others have been inferred by the co-segregation of translocations with the phenotype. We previously found that mice with ocular retardation (the or-J allele), a microphthalmia phenotype, have a null mutation in the retinal homeobox gene Chx10 (refs 7,8). We report here the mapping of a human microphthalmia locus on chromosome 14q24.3, the cloning of CHX10 at this locus and the identification of recessive CHX10 mutations in two families with non-syndromic microphthalmia (MIM 251600), cataracts and severe abnormalities of the iris. In affected individuals, a highly conserved arginine residue in the DNA-recognition helix of the homeodomain is replaced by glutamine or proline (R200Q and R200P, respectively). Identification of the CHX10 consensus DNA-binding sequence (TAATTAGC) allowed us to demonstrate that both mutations severely disrupt CHX10 function. Human CHX10 is expressed in progenitor cells of the developing neuroretina and in the inner nuclear layer of the mature retina. The strong conservation in vertebrates of the CHX10 sequence, pattern of expression and loss-of-function phenotypes demonstrates the evolutionary importance of the genetic network through which this gene regulates eye development.  相似文献   

18.
Hair, skin and eye colors are highly heritable and visible traits in humans. We carried out a genome-wide association scan for variants associated with hair and eye pigmentation, skin sensitivity to sun and freckling among 2,986 Icelanders. We then tested the most closely associated SNPs from six regions--four not previously implicated in the normal variation of human pigmentation--and replicated their association in a second sample of 2,718 Icelanders and a sample of 1,214 Dutch. The SNPs from all six regions met the criteria for genome-wide significance. A variant in SLC24A4 is associated with eye and hair color, a variant near KITLG is associated with hair color, two coding variants in TYR are associated with eye color and freckles, and a variant on 6p25.3 is associated with freckles. The fifth region provided refinements to a previously reported association in OCA2, and the sixth encompasses previously described variants in MC1R.  相似文献   

19.
IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号