首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
汽车排气系统的振动和噪声是影响乘坐舒适性的因素之一。为研究排气消声器结构模态和声腔模态对消声器降噪性能的影响规律,建立声学有限元模型计算壳体结构模态和声腔模态,并分析各自振型模态和固有频率之间的关系。结果表明:在低频率范围内,壳体结构模态和声腔模态的固有频率发生耦合共振,导致降噪效果不佳;增加消声器外壳壁厚可提升结构固有频率,降低排气系统振动和辐射噪声水平。  相似文献   

2.
针对火炮的膛口噪声问题,提出了一种基于激波降噪机理的消声方法,利用超声速气流经过激波后总压降低、可用能量降低的特点来降低膛口噪声声功率,进而设计了一种膛口消声器,通过扩张段增加马赫数、收缩段产生激波可以不断降低火药燃气的可用能量,达到降低膛口噪声的目的。建立消声器的数值计算模型及仿真分析,研究了消声器内部的流体流动情况及激波形成过程,以炮口及消声器出口的总压降低情况分析了消声器的降噪效果,并设置外部监测点检测外部压力场的变化,最后通过试验验证消声器降噪效果。结果表明:基于激波降噪机理设计的消声器可降低膛口噪声19dB左右,且试验降噪量与采用总压降低量进行分析的降噪效果基本一致,证明了应用激波特性降低噪声以及采用总压降低量分析消声器降噪效果的可行性。研究内容为消声器设计提供了一种新思路,为炮口噪声的降低提供了理论及工程指导。  相似文献   

3.
通过后置柴油机客车整车噪声的远场、近场值测试和噪声分离等多项试验,经过计算并对噪声样本进行频谱分析、偏相干分析,确定冷却风扇噪声、排气噪声、发动机噪声是整车3个主要噪声源。在不改变原车主要结构的前提下,采用玻璃纤维等隔声材料屏蔽发动机舱及冷却风道壁;加大风扇直径并降低转速;在排气管和消声器外包扎隔声材料等措施进行降噪对比试验,达到较好的整车降噪效果。  相似文献   

4.
大客车降噪的研究   总被引:3,自引:2,他引:1  
运用噪声分离、频谱分析等技术手段,找出了GZ6921型后置柴油机大客车噪声超过国家标准的原因,并对主要噪声源及其频谱分布进行了分析对各主要噪声源-排气系统、冷却系统和发动机舱采取相应的降噪措施,如降低风扇转速,改善抗性消声器的降噪能力,修改冷却风进风道,平衡车两侧的噪声源,在发动机舱中粘贴吸音材料等。改进后GZ6921型大客车最大加速度时的车外噪声由91.5dB(A)降到86dB(A)以下,达到国际GB1495-75“机动车允许噪声”的规定。  相似文献   

5.
通过后置柴油机客车整车噪声的远场,近场值测试和噪声分离等多项试验,经过计算并对噪声样本进行频谱分析,偏相干分析,确定冷却风扇噪声,排气噪声,发动机噪声是整车3个主噪声源,在不改变原车主要结构的前提下,采用玻璃纤维等隔声材料屏蔽发动机舱及冷却风道壁;加大风扇直径并降低转速;在排气管的消声器外包扎隔声材料等措施进行降噪对比试验,达到较好的整车降噪效果。  相似文献   

6.
对AG-35/39M1型锅炉排气放空噪声进行测量,并进行频谱分析,找出主要噪声源发生在频率为1118 Hz处。根据其频谱特性和排气放空噪声产生机理及喷注噪声具有的声级高(140 dB左右)、频率宽、传播远、影响范围大等特点,优化设计了节流降压-小孔喷注复合式消声器,并采用锤击法对消声器试件进行实验模态分析及消声特性试验,可知其频率远远避开了噪声的峰值频率,消声器不会在噪声峰值时产生共振,为设计出结构合理、性能优良的消声器提供了可靠依据。  相似文献   

7.
针对内燃机热泵机组运行发热量大、噪声频谱特性复杂的特点,设计了一种安装在发动机和压缩机上的带通风系统的隔声罩来降低中高频噪声,对低频噪声设计了双室抗性消声器进行降噪.为了解决隔声罩内部设备散热导致的罩内温度升高问题,详细推导和计算了罩内通风量,设计了罩内的气流形式,模拟了罩内的空气温度场和速度场,得到了该通风方案能够及时有效地排出隔声罩内热量的结论.实验研究了安装带通风系统的隔声罩和双室抗性消声器之后内燃机热泵系统的噪声问题,结果表明,隔声罩和双室抗性消声器配合使用能够使本实验样机的噪声有大幅度的下降.  相似文献   

8.
排气噪声是后置柴油机客车的主要噪声源,排气消声器是降低排气噪声的主要部件。用二维声学边界无法建立消声器的降噪模型,用插入损失评价消声量,边界元模型计算结果与客车行驶噪声测试结果吻合很好,证明计算模型可应用于消声器选型计算或优化设计。实验证明消声器外包隔声材料在全频程有降噪效果,1kHz以上高频段降噪效果更好,可预见较低的声穿透系数的双层消声器有可观的降噪潜力,应积极研制。  相似文献   

9.
节流降压-小孔喷注消声器优化设计与模态分析   总被引:2,自引:0,他引:2  
对AG-35/39M1型锅炉排气放空噪声进行测量,并进行频谱分析,找出主要噪声源发生在频率为1 118 Hz处.根据其频谱特性和排气放空噪声产生机理及喷注噪声具有的声级高(140 dB左右)、频率宽、传播远、影响范围大等特点,优化设计了节流降压-小孔喷注复合式消声器,并采用锤击法对消声器试件进行实验模态分析及消声特性试验,可知其频率远远避开了噪声的峰值频率,消声器不会在噪声峰值时产生共振,为设计出结构合理、性能优良的消声器提供了可靠依据.  相似文献   

10.
排气噪声是后置柴油机客车的主要噪声源,排气消声器是降低排气噪声的主要部件,用一维声学边界元法建立消声器的降噪模型,用插入损失评价消声量,边界元模型计算结果与客车行驶噪声测试结果吻合很好,证明计算模型可应用于消声器计算或优化设计,实验证明消声器外包隔声材料在全频程有降噪效果,1kHz以上高频段降噪效果更好,可预见较低的声穿透系数的双层消声器有可观的降噪潜力,应积极研制。  相似文献   

11.
运用史蒂文斯稳态宽频带噪声响度计算方法以及Fastl总感觉噪度计算方法,分别对压缩机改进前、加装小孔消声器后左侧和后端面的噪声进行了声品质评价分析;分析表明,安装小孔消声器后,在噪声降低的同时,压缩机左侧和后端面的响度分别下降了10.25、13.3 sone,下降率均达到了40%以上,总感觉噪度分别下降了12.5、15 noy,下降率均达到了45%以上,说明小孔消声器对压缩机的声品质改善是非常理想的.  相似文献   

12.
 消声器是降低内燃机排气噪声的主要部件。通过设计独立测试排气噪声的台架实验,分析了安装消声器前后的排气频谱特征,对比期望的噪声评价曲线,得到了消声器性能不足的频段主要集中在中高频。根据流体和声学的基本理论,基于三维数值有限元,分析了复杂消声器非定常流动状态下其压力场、温度场、再生噪声场分布和主要贡献的噪声频段,研究了消声器在稳态下的传递损失;通过研究声学传递过程中的空腔模态特征,找到了影响消声效果的主要因素。基于消声器仿真模型,研究了消声单元结构特征与消声性能之间的关系,通过改善复杂消声器的小孔结构和增加吸声材料,采取实验对比分析了插入损失,验证了分析和改进的有效性。本文综合分析了流体、声学以及流体对声学的影响,研究了内燃机排气消声器性能,此系统方法能更全面地了解和改进排气噪声。  相似文献   

13.
加箍约束压缩机和吸声导流锥的气动声学研究   总被引:1,自引:0,他引:1  
设计了两种新型的降噪技术装置-加箍约束式制冷压缩机和针对风机噪声的吸声导流锥结构,加箍约束式制冷压缩机不仅使压缩机具有优越的低频抗噪能力,还解决了其他传统方法无法避免的压缩机散热问题,吸场所地流锥是利用泡沫塑料作吸声体,降低二次噪声,并有导流作用,与传统方法相比,其优点是结构简单,成本低、降噪效果好。  相似文献   

14.
以某款商用车消声器为研究对象,针对一维线性消声器模型在高速气流影响下计算失准现象,研究一种基于一维/三维耦合模型的数值仿真分析方法;并结合实验数据对其结果进行验证。结果表明:随着发动机转速的提高,在某一转速后,一维消声器声学预测与实验数据不符,原因是在其内部产生了一维模型无法预测的气流再生噪声;基于Lighthill声类比理论的三维数值仿真,可较好地模拟空间域气动噪声场;并指出目标消声器再生噪声源产生域。一维/三维联合仿真可以实现真实情况下消声器声学性能的预测。  相似文献   

15.
文章通过对进气口和驾驶员耳边的噪声进行测试,分析并确定进气罩的几个因素对进气噪声的影响。针对这些因素的影响设计了正交实验,以此找出进气罩位置、尺寸等因素的最佳组合来改善进气噪声,对最佳组合方案时的进气口噪声进行了测试及频谱分析;根据噪声所在的主要频率设计了进气消声器,制造安装后收到较好效果。  相似文献   

16.
荆各庄主要通风机主扇排风通道环境恶劣,粉尘浓度高、湿度大,致使原消声设备降噪效果不明显.本文通过选择合适的消声器以及吸声材料实验和防尘方案的设计.最终设计出了满足高湿度、高粉尘环境条件下运行的消声装置.该消声装置结构简单,对主要通风机的阻力损失影响小,防尘、防潮及降噪效果明显,可广泛的应用于煤矿主要通风机的消声降噪.  相似文献   

17.
为探究双模式消声器气流再生噪声,搭建了消声器试验台架,采用双传声器传递函数法和消声器静态传递损失法,在不同进口流速下,测量了双模式消声器在阀门关闭和打开状态下出口端气流再生噪声入射声功率和尾管噪声。试验结果表明,阀门打开时气流再生噪声与尾管噪声均降低,出口端气流再生噪声入射声功率最高下降1.1dB,尾管噪声最高下降2.3dB,直接验证了双模式消声器有助于降低气流再生噪声的特点。在试验基础上,建立了双模式消声器三维模型,通过Fluent有限元软件对消声器内部流场进行数值仿真,获得了消声器内部压力、气流流速及湍动能的分布特性。仿真结果表明,阀门打开时消声器内部压力、气流流速及湍动能均比阀门关闭时低。仿真和试验结果基本吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号