首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
Based on the scanning electron microscope (SEM) observations, it is confirmed that the nacre is composed of aragonite crystals and organic matrix with interlaced arrangement, showing ordered "brick-mortar" structure. The dynamic analysis of preferential orientation of aragonite crystals in the nacre from the abalone (Haliotis diverscolor supertexta) with different shell ages is systematically investigated using X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). Experiments reveal that, in the nacre from the juvenile mollusk shell, there exist three kinds of orientations of aragonite crystals: (113), (002) and (012). However, along with the growing of the mollusk shell, the intensity of (012) and (113) becomes weak, and the (002) becomes the preferred crystal orientation of aragonite in the nacre from the adult mollusk shell, which means that the c axis of aragonite crystals is perpendicular to the nacreous layers. The results obtained show that the nacre possesses a highly ordered structure at the micrometer/nanometer multiscale levels.  相似文献   

2.
贝壳中文石晶体择优取向的XRD分析   总被引:1,自引:0,他引:1  
贝壳珍珠层独特的结构是其优异力学性能的重要原因.采用X射线衍射法(XRD)对贝壳珍珠层及柱状晶的晶体结构及择优取向进行了详细的探讨.结果表明:珍珠层中文石晶体在沿珍珠层面上存在两种定向排列,即(002)和(012),具有择优取向性,柱状晶层结构的无序性比珍珠层大.  相似文献   

3.
The pearl or nacreous layer of mollusk shell is composed of CaCO3 aragonite crystals. The factors affecting their color are very complex, such as metal elements, chromoprotein, and nucleation materials, we analyzed the crystal orientation of nacreous layers with different color prepared from fresh water clamsHyriopsis cumingii Lea by X-ray diffraction. The results show that the crystal CaCO3 orientation on specific plane is responsible for the color of pearl and nacreous pearl color. Supported by National Natural Science Foundation of China and Morning Sunlight Program of Wuhan City Government. Jiang Xinnong: born in 1970, Lecturer  相似文献   

4.
A soluble matrix protein P14 with an apparent molecular mass of 14.5 kDa was isolated from fragmented nacre of pearl oysters (Pinctada fucata) treated with 10% NaOH solution to investigate the nacre matrix proteins and their effect on the CaCO3 crystal. The protein was characterized by gel exclusion chromatography and reversed-phase high performance liquid chromatography after demineralization by 10% acetic acid. The X-ray diffraction pattern of P14 crystals indicates that P14 plays an important role in nacre biomineralization. P14 can induce aragonite formation, stimulate CaCO3 crystal formation, and accelerate aragonite precipitation. Heating of the acid insoluble nacre residue, which was named conchiolin, in 10% sodium dodecyl sulfate solution supplemented with 10% β-mercaptoethanol solution for 10-20 min at about 100℃ gave two other soluble proteins having molecular masses of 19.4 kDa and 25.0 kDa. The present study suggests that these two proteins are linked to the insoluble organic matrix by disulfide bridges because the extraction yield increases when β-mercaptoethanol is added to the medium.  相似文献   

5.
利用扫描电镜对大珠母贝、合浦珠母贝及三角帆蚌壳中区珍珠层自然断面微结构进行了系统的研究,首次发现贝壳珍珠层纵向文石板片厚度在不同部位具有明显的差异,大珠母贝、合浦珠母贝及三角帆蚌珍珠层从内层面到外层面文石板片最大厚度差分别达到462、246、26nm;并根据SEM观察结果初步建立了一种新的连续可变厚度型珍珠层结构模型,这对生物矿物学、物理光学及仿生材料学方面的相关研究具有重要指导意义.  相似文献   

6.
珍珠母堆垛微结构的力学性能和热稳定性   总被引:1,自引:0,他引:1       下载免费PDF全文
一直以来,软体动物贝壳内的珍珠母因为其由文石片和片间有机基质薄层堆垛而成的微结构及其卓越的力学行为而广受关注,但对贝壳珍珠母的多级结构,尤其是其中的两级有机基质结构的力学功能研究甚少.本文通过机械载荷和温度载荷组合来研究皱纹盘鲍(Haliotis Discus Hannai)贝壳内的珍珠母的结构和力学特性关联.发现文石片层间的有机基质的热解有效降低了珍珠母堆垛微结构的强度和韧性,并在250℃时使珍珠母的层叠堆垛结构完全崩溃,此时有机基质的热解量约为1.7wt%,仅为有机基质总量的40%.而力学性能试验比较发现,珍珠母堆垛微结构的热稳定远低于其基本组成单元——文石片纳米复合结构.另外,尽管有机基质薄层的黏着作用对珍珠母的力学性能具有积极意义,但珍珠母微结构本身的逐层交错堆垛设计机制是影响其刚度的决定性因素.  相似文献   

7.
天然生物材料的组织结构特征及其与性能间的关系研究对于材料的仿生设计有重要意义.利用压痕法压研究了贝壳材料的硬度,断裂韧性及脆性指标,并结合SEM技术研究了贝壳珍珠层压痕形貌,探讨了珍珠层的增韧机制.结果表明,无论是珍珠层和还是柱状晶生长纹对其性能影响较小,珍珠层在平行于片层方向上与垂直于片层方向的性能差别较大,珍珠层明显的各向异性主要来自于其独特的组织特征.珍珠层其成分和独特的微观结构特点决定了其在应力场中是一种能量耗散结构,裂纹在扩展过程中,裂纹偏转,有机物桥联,纤维拔出等多种增韧机制在协同作用于材料韧性.  相似文献   

8.
采用高分辨SEM及XRD对合浦珠母贝韧带进行了研究,结果表明,合浦珠母贝韧带无机相主要由文石组成.韧带具有明显的层状结构,同一生长层及相隔生长层中文石纤维呈一致定向排列,而相邻生长层文石纤维的定向明显不同,呈“交叉棱柱层”结构样式.合浦珠母贝韧带中文石纤维的直径为80~90 nm,具有典型的2D光子晶体结构特征.  相似文献   

9.
Carbon nanotubes (CNTs)/mesostructured silica core-shell nanowires with a carbon nanotube core and controllable highly ordered periodic mesoporous silica shell are syntheiszed via the interfacial surfactant template. The core-shell nanowires are characterized by transmission electron microscope (TEM), X-ray diffraction pattern (XRD) and nitrogen sorption/desorption. The results indicate that the core-shell nanowires have highly ordered periodic mesoporous silica shell (space group p6mm), high BET surface area and narrow pore size distribution. Moreover, the morphology of core-shell nanowires can be controlled by the pH value. The core-shell nanowires have promising applications in biosensors, nanoprobes and energy storage due to their good dispersibility in polar solvents. Supported by the Australian Research Council (ARC) through Discovery Project program (DP0452461)  相似文献   

10.
不同分解工艺生产的高白填料,其氢氧化铝晶体生长形态不同.采用扫描电镜、X射线衍射和拉曼光谱等分析手段研究了碳分和种分氢氧化铝高白填料产品的微观结构,揭示了它们晶体发育的变化.结果表明,高白填料氢氧化铝晶体属单斜晶系,空间群P21/n,择优生长晶面均为(002)晶面;种分氢氧化铝晶体比碳分氢氧化铝晶体的(002)晶面择优取向因子值小,为多晶面生长;种分氢氧化铝晶体晶格参数比碳分氢氧化铝晶体晶格参数和拉曼光谱特征峰半高宽数值小,因此,种分高白填料氢氧化铝晶体中杂质和晶格缺陷比较少,晶体结晶度明显好于碳分高白填料产品.  相似文献   

11.
Seep carbonates were collected from the Alaminos Canyon lease area, Gulf of Mexico. The carbonates are present as slabs and blocks. Bivalve shell and foraminifer are the dominant bioclasts in carbonate. Pores are common and usually filled with acicular aragonite crystals. XRD investigation shows that aragonite is the dominate mineral (98%). Peloids, clotted microfabirc and botryoidal aragonite are developed in carbonate and suggest a genesis linked with bacterial degradation of the hydrocarbons. The δ^13C value of bioclasts in carbonate is from -4.9‰ to -0.6‰, indicating that the carbon source is mainly from sea water as well as the small portion incorporation of the seep hydrocarbon. The microcrystalline and sparite aragonite shows the δ^13C value from -31.3‰ to -23.4‰, suggesting that their carbon is derived mainly from microbial degradation of crude oil. ^14C analyses give the radiocarbon age of about 10 ka. Rare earth elements (REE) analyses of the 5% HNO3-treated solution of the carbonates show that the total REE content of the carbonates is low, that is from 0.752 to 12.725 μg·g^-1. The shale-normalized REE patterns show significantly negative Ce anomalies. This suggests that cold seep carbonate is most likely formed in a relatively aerobic environment.  相似文献   

12.
珍珠中碳酸钙与有机基质之间相互作用的研究   总被引:15,自引:0,他引:15  
首次利用傅里叶变换红外光谱法对珍珠进行了表征,从碳酸钙红外谱带的位置及形状的变化直接证实了珍珠中亚微米级文石型碳酸钙晶体与有机基质界面之间存在着较强的络合作用。结合ICP-AES成分分析和SEM形貌分析,表明了上述络合作用正是珍珠形成高度有序的层状结构、且具有高强度、高韧性的化学本质。  相似文献   

13.
Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ 13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ 13Ca values are closely correlated to the body δ 13Corg values, expressed as δ 13Ca = 1.021 δ 13Corg 14.38 (R = 0.965; N = 31). This relationship indicates that δ 13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3-in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.  相似文献   

14.
通过紫外-可见(ultraviolet-visible, UV-VIS)吸收光谱、场发射扫描电镜(field emissionscanning electron microscope, FE-SEM)与傅里叶变换红外(Fourier transform infrared,FTIR)光谱对海水养殖金色珍珠(golden seawater cultured pearl, gold CP)的微结构及其吸收光谱特征进行了较系统的研究. 结果表明: 海水养殖金色珍珠外表面珍珠层“叠瓦状”结构的疏密程度在其表面的不同区域存在不同, 该特征可能是导致金色珍珠不同区域的紫外-可见吸收光谱存在差异的因素之一; 在由内向外的方向上, 接近珍珠核心处的珍珠层中未见单一的文石板片或棱柱结构, 而在珍珠层的中部及外侧区域均为文石板片结构; 珍珠层的外表面由多级结构构成, 其中单个珍珠层微米级的文石板片由纳米级文石小颗粒组成.  相似文献   

15.
首次用扫瞄电镜研究了喷雾干燥合成中孔分子筛的过程中颗粒的形成过程 ,发现了颗粒自外向内的逐层生长机制 ;用扫描电镜还研究了获得有序结构需要的表面活性剂量和喷雾温度 ;通过透射电镜和X射线观察 ,分子筛中存在有序结构 ,证实了扫描电镜观察的正确性 .  相似文献   

16.
The vertical floating catalyst method is first used to produce single-walled carbon nanotubes (SWNTs) continuously on a large scale by a newly developed technique and pyrolysis of n-hexane. Diameter distributions, microstructure and purity of the SWNTs film, rope and web are measured by Raman spectroscopy and electron microscope. The results show that SWNTs product has a high degree of orientation, a wide distribution of diameters (0.7–2.0 nm) and high purity of >80%.  相似文献   

17.
Bone indentation recovery time correlates with bond reforming time.   总被引:12,自引:0,他引:12  
Despite centuries of work, dating back to Galileo, the molecular basis of bone's toughness and strength remains largely a mystery. A great deal is known about bone microsctructure and the microcracks that are precursors to its fracture, but little is known about the basic mechanism for dissipating the energy of an impact to keep the bone from fracturing. Bone is a nanocomposite of hydroxyapatite crystals and an organic matrix. Because rigid crystals such as the hydroxyapatite crystals cannot dissipate much energy, the organic matrix, which is mainly collagen, must be involved. A reduction in the number of collagen cross links has been associated with reduced bone strength and collagen is molecularly elongated ('pulled') when bovine tendon is strained. Using an atomic force microscope, a molecular mechanistic origin for the remarkable toughness of another biocomposite material, abalone nacre, has been found. Here we report that bone, like abalone nacre, contains polymers with 'sacrificial bonds' that both protect the polymer backbone and dissipate energy. The time needed for these sacrificial bonds to reform after pulling correlates with the time needed for bone to recover its toughness as measured by atomic force microscope indentation testing. We suggest that the sacrificial bonds found within or between collagen molecules may be partially responsible for the toughness of bone.  相似文献   

18.
以聚烯丙基氯化铵(PAH)为模板剂,(NH_4)_2CO_3为沉淀剂,采用液相法合成了特殊形貌的碳酸铈晶体.利用激光共聚焦显微镜、扫描电镜、红外光谱(FT-IR)及X射线衍射(XRD)等技术研究了不同反应时间碳酸铈形貌的变化,并对碳酸铈晶体的形貌和结构进行了表征.结果表明:在模板剂PAH的作用下,碳酸铈的形貌由最初的棒状逐渐向六棱片状转化,这一过程与PAH对碳酸铈晶体不同晶面的取向吸附有关.采用材料模拟软件Material Studio对PAH与碳酸铈晶面的静电吸附过程进行了模拟,从而揭示了PAH模板调控碳酸铈形貌的机理.  相似文献   

19.
A new type Ni-P hollow material with rod-shape is prepared by electroless deposition method and heat treatment based on the shape of Nocadia, a kind of bacteria. The material is characterized and its magnetic, electromagnetic and mechanical properties are measured. It is found that the Ni-P coating transforms from a disordered structure before hollowing to an ordered arrangement of face centered cubic (FCC) Ni after hollowing at 673 K and body centered tetragonal Ni3P occurs. After hollowing no change of the surface morphology has been found. But the cytoplasm disappears and the Ni-P layer becomes more compact. A new type hollow material with shell thickness of 150-200 nm is obtained. The saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) are enhanced to 20 emu/g, 2.7 emu/g and 117.5Oe, respectively. The dielectric and magnetic loss are improved to 14 and 0.4, respectively. The hardness and the elastic modulus are raised to 1.80 GPa and 23.79 GPa, respectively. All show great improvement compared with those before hollowing.  相似文献   

20.
为了验证Al2O3-ZrO2复相陶瓷压缩变形后是否出现织构,采用X射线衍射(XRD)、极图和扫描电镜(SEM)对Al2O3-ZrO2复相陶瓷超塑压缩变形后的组织进行了分析。结果表明:复相陶瓷压缩变形后,Al2O3晶粒在(110)、(113)和(300)晶面出现择优取向,织构强度高达6.21,而ZrO2取向不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号