首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
为了使装有电涡流缓速器的车辆在下坡时能以稳定的速度行驶,以电涡流缓速器的制动力矩和励磁电流的关系为依据,应用脉宽调制(PWM)技术实现电涡流缓速器制动力矩的无级调节.分析了车辆下坡运行的工况,以车辆的速度和瞬时加速度产生的惯性力作为电涡流缓速器制动力矩的控制依据,提出了电涡流缓速器制动力的无级控制策略,并绘制了控制流程.利用实车的不同初始运行工况进行模拟,计算结果表明,对车辆电涡流缓速器制动力矩的实时控制能使车辆在坡道上以稳定的目标速度行驶.  相似文献   

2.
为了有效提高轿车制动效率,建立了摩擦式制动器与非接触轮边缓速器集成系统控制模型,获得了缓速器制动力矩和集成系统总制动力矩随车轮转动角速度的变化关系;提出了通过脉冲宽度调制调节缓速器线圈通电电流从而改变集成系统总制动力矩的方法。利用建立的系统控制模型和控制策略对汽车制动性能进行仿真。仿真和实例分析表明,与传统的制动系统相比,摩擦式制动器与非接触轮边缓速器集成系统使制动时间缩短3.7 s,制动距离减少76.8 m。  相似文献   

3.
宋美玉 《科技信息》2007,(23):298-299
本文以几种典型的汽车辅助制动装置(发动机排气辅助制动装置、液力缓速器、电涡流缓速器、永磁式缓速器、自励式缓速器)为例,介绍了与传统制动方式不同的另一种辅助制动系统的工作原理及使用等情况。  相似文献   

4.
汽车永磁无级缓速器有利于实现各种路况下的最佳缓速制动.笔者研究了永磁缓速的工作原理,提出了一种新型轴向移动式的无级调速设计方案,通过理论分析计算确定了设计参数,并采用Matlab中的fmicon函数模块进行二阶非线性结构优化得出关键结构的最优解.利用ANSOFT软件建立了三维电磁场有限元仿真模型,对永磁缓速器进行磁场和制动力矩的静态和瞬态分析,分析磁场的分布特点和影响因素,对转子总成与定子鼓之间不同轴向位置的制动力矩分析表明,该缓速器能够实现良好的线性控制和稳定的制动力矩输出,能够满足无级缓速制动的需要.  相似文献   

5.
江苏大学的“一种制动力矩可分挡的永久磁铁式缓速器”技术被授予国家实用新型专利.实用新型以永久磁铁作为磁源的车用缓速器,特指一种制动力矩可分挡的永久磁铁式缓速器.设有一套制动装置,包括一个安装在发动机输出轴上的鼓形转子,一个固定在变速箱上的定子.定子部分主要包括磁铁保持架、固定磁铁支架、活动磁铁支架、永久磁铁及操作机构.磁铁保持架内有两列磁铁,其特征在于每排磁铁有若干组永久磁铁,每一组磁铁由多块极性排列相同的磁铁组成,各组磁铁之间的磁极交替反向排列,各自固定在磁铁支架上.该结构紧凑简单,易于实现.通过改变永久磁铁工作的磁极组数,设置若干制动挡位,使永磁式缓速器根据车辆实际情况的需要提供大小不同的制动力矩.  相似文献   

6.
针对现有涡流制动器制动力矩计算方法中包含经验系数,妨碍涡流制动器制动力矩的精确计算和产品性能提升的问题,在原有圆盘假设的基础上,将涡流作用区域圆盘内的闭合涡流圆环等效成电流为涡流有效值、匝数为1的虚拟线圈.在综合考虑涡流去磁效应的前提下,根据毕奥-萨伐尔定律,推导得到涡流制动器的气隙磁感应强度,并利用能量守恒法计算涡流制动器的制动力矩.以电涡流缓速器为例,对推导出的计算公式进行验证计算.结果表明:试验曲线与理论计算吻合较好,该制动力矩计算方法能够很好地体现涡流去磁效应对制动力矩的影响.  相似文献   

7.
永磁式缓速器的稳健性设计   总被引:4,自引:0,他引:4  
基于稳健性设计原则和Taguchi算法,永磁式缓速器的设计分为概念设计、参数设计和容差设计.以性能最稳定,波动最小,信噪比最大为目标,选取合适的参数作为内表,参数波动率为外表.用正交表排列设计参数,用F检验确定系统的最优设计参数和恰当的容差+算例选择制动力矩计算模型中的磁极数N、内半径r1及外半径r2为可控因素,制动力矩波动率作为质量特性输出值.结果表明:采用稳健性设计的永磁式缓速器可以较好地改善制动力矩波动率.  相似文献   

8.
基于PWM的电涡流缓速器控制系统   总被引:3,自引:0,他引:3  
分析了现有汽车电涡流缓速器结构及工作原理,介绍了一种基于PWM的电涡流缓速器系统控制方案,详细介绍了系统驱动电路的结构、工作原理及控制方式,采用这种电路可以实现励磁电流的连续调节,从而实现恒速、恒流及恒转矩等高性能的缓速功能.  相似文献   

9.
为了保证拖挂式房车制动时具有良好的横摆稳定性及行驶路径,提出以房车铰接角和横摆角速度为控制目标的差动制动控制方法.考虑电磁制动器机电耦合特性,建立了基于线性六自由度的牵引车-房车转向制动力学模型;建立拖挂式房车稳态行驶时铰接角模型,引入多目标PID加权控制算法和多目标PID协调控制算法,应用差值制动控制横摆力矩的原理,使房车铰接角和横摆角速度准确跟随目标期望值,实现房车制动时具有良好的横摆稳定性及行驶路径.基于TruckSim与Simulink的联合,进行了脉冲、阶跃转向工况下的仿真试验.仿真结果表明,提出的加权控制和协调控制均能保证拖挂式房车在制动时具有良好的行驶路径及横摆稳定性;相比于无差动制动,这两者使房车相对横摆角减小约25%;相比于以横摆角速度为目标的差动制动,这两者使房车的行驶路径偏差减小约20%.  相似文献   

10.
利用电涡流缓速器调节车辆制动稳定性   总被引:1,自引:0,他引:1  
利用电涡流缓速器制动力矩可控的特点,将电涡流缓速器的力矩输出进行适当的控制并施加在后轮上,与后轮制动器制动力共同形成了复合制动力.建立了车辆制动力的调节模型,理论上确定了电涡流缓速器的通电电流是车辆前轮制动器制动力的函数.实车模拟结果表明,后轮的地面制动力随前轮制动器制动力的变化关系,能较好地贴近车辆的理想制动力分配曲线,车辆较好地利用了地面的附着能力,改善了车辆的制动稳定性.  相似文献   

11.
研究了电磁旋转涡流制动器制动力矩控制方法。利用磁路分析法得到了制动力矩的计算公式,以及制动力矩与励磁电流及列车速度的数学关系,从而确定制动力矩控制系统的总体方案,阐述系统工作原理,说明系统各主要组成模块,建立其仿真模型,并根据系统总体方案完成模块集成。介绍了PID(比例-积分-微分)控制、模糊控制、模糊自适应PI控制3种制动力矩控制算法,说明控制器设计步骤。完成仿真计算,并对结果进行对比分析。结果表明,相对于开环控制,3种控制算法都能有效地控制制动力矩。此外,无论是系统瞬态性能指标,还是稳态性能指标,都是模糊自适应PI控制表现最佳,模糊控制次之,PID控制相对最差。  相似文献   

12.
再生制动是混合动力汽车区别于传统汽车的技术特点,是提高车辆燃油经济性的重要措施之一.以一种轴间力矩耦合的插电式并联混合动力汽车为研究对象,从再生制动分配算法的影响因素入手,提出了一种带有模糊控制的混合动力汽车再生制动能量管理策略.所设计的控制策略主要针对两个层面的控制决策,顶层是轴间制动力矩的分配决策,底层是再生制动电机所在的后轴力矩在摩擦制动与再生制动之间的分配决策.采用多种典型车辆行驶工况对所提出的模糊控制策略进行仿真研究.结果表明,所提出的模糊控制策略能够明显改善车辆的能量回收效果,与传统理想制动力分配曲线控制策略相比,能量回收最多可提高23.44%.  相似文献   

13.
永磁同步电机直接转矩控制电压矢量选择区域   总被引:6,自引:0,他引:6  
为了解决直接转矩控制系统开关表引起的转矩脉动问题,分析了电压矢量对永磁同步电机直接转矩控制系统的定子磁链幅值、转矩角、励磁转矩、磁阻转矩和电机转矩的作用,用简单的数学表达式给出了这些变量的控制规律,得出了永磁同步电机直接转矩控制系统的电压矢量选择区域。研究结果表明:电压矢量与定子磁链的夹角决定了电压矢量对定子磁链幅值和转矩角的增减作用;电压矢量与定子磁链的夹角和转矩角决定了电压矢量对励磁转矩和磁阻转矩的增减作用;电压矢量与定子磁链的夹角、转矩角和永磁同步电机直接转矩控制系统参数决定了电压矢量对转矩的增减作用。  相似文献   

14.
针对当前重型车辆在缓速制动中存在的不足,设计了由液压泵/马达元件、蓄能器以及溢流阀等组成的液压辅助缓速制动装置。通过对车辆与制动装置的分析,制定了系统构型、液压原理图以及制动加速策略;应用AMESim软件搭建了车辆传动系统以及液压系统的模型;对不同档位下的制动效果进行了分析;并研究了在标准循环工况下机械制动与液压制动的分配;搭建了液压系统相关实验回路,对液压回路的转矩、流量、压力以及温度等参数进行了研究。得到了在不同车辆行驶状况下的制动效果,以及不同制动信号下的响应特性,证明该缓速制动系统在转矩可控性以及散热能力可以得到有效提升,并能长时间可靠运行。  相似文献   

15.
为提升电驱动履带车辆动力性与经济性,设计并研制了新型齿形带式制动器以替代行星变速机构中的湿式多片离合器. 依据齿形带式制动器结构与工作原理,建立了制动过程的数值模型,研究了制动过程中制动鼓转角、转速和制动力矩等参数变化规律. 同时搭建齿形带式制动器试验台架验证了方案可行性和数值模型的正确性. 结果表明,制动鼓初始转速直接影响制动时间和制动力矩大小,且初始转速越高,制动时间越短,制动力矩相应增大. 相比原有装置,新结构方案提升了制动转速范围,具有更优的工作可靠性和使用前景.   相似文献   

16.
基于滑模控制理论的车辆横向稳定性控制   总被引:1,自引:0,他引:1  
针对车辆在极限运动工况下转弯或变道行驶时的横向稳定性控制问题,建立以车辆横向速度、横摆角速度及车身侧倾角为状态变量的3自由度非线性动力学模型.在动力学分析的基础上,探讨依靠施加各车轮不同纵向制动力而产生辅助横摆力矩的方法来提高车辆在极限工况下的操纵稳定性.考虑到作为车辆状态变量之一的质心侧偏角难以测量,设计了基于车辆动力学模型及运动学关系相结合的质心侧偏角估计器.运用滑模控制理论,以车辆横摆角速度和质心侧偏角与相应的理想横摆角速度和质心侧偏角之差,作为车辆稳定性控制系统的两类控制输入变量,以车轮纵向制动力矩和方向盘转角为控制目标建立了联合滑模控制系统,通过计算机仿真表明,该控制方法可以有效改善车辆横向稳定性.  相似文献   

17.
提出了一种新的基于预测控制的转矩优化控制方法,以协调控制紧急制动工况下的四轮轮毂电动汽车复合制动(液压制动和再生制动)系统.其转矩优化控制器可快速地跟踪车辆在不同路面附着条件下的最佳滑移率稳定区域;同时,在控制目标函数中加入能量回收趋势优化项,用于能量回收目标的快速动态调整,通过调节优化目标函数权值的大小,实现制动安全的同时提高车辆的能量回收能力.在Carsim中建立了车辆模型并和Simulink运行环境进行了联合仿真,验证了提出的转矩优化方法的有效性.  相似文献   

18.
分布式驱动电动汽车操纵性改善控制策略设计   总被引:2,自引:0,他引:2  
根据分布式电动汽车各轮驱动/制动转矩独立精确可控的特点,设计了一种改善车辆操纵性能的控制策略.根据不同车速下理想的助力特性曲线设计了差动助力转向控制策略以改善转向轻便性,根据优化的横摆角速度参考模型设计了转矩矢量分配控制策略以改善操纵灵敏性,最后利用纵向力分配算法将两者结合形成差动助力转向/转矩矢量分配联合控制策略.实车试验结果表明,操纵性改善控制策略在保证驾驶员路感信息的前提下明显减小了转向盘转矩,减小了转向盘转角,降低了驾驶员操纵负担.明显提高了整车横摆角速度响应,有效地抑制了车辆的加速不足转向特性,显著地改善了分布式驱动电动汽车的操纵性能.  相似文献   

19.
电动汽车再生制动控制策略研究   总被引:4,自引:0,他引:4  
制定合理的再生制动控制策略,使其在保证制动稳定性的基础上,最大限度回收制动能量. 通过对汽车制动动力学和相关法规的分析,结合电机的输出特性,建立了电机模型,提出了一种前后轮制动力分配的控制策略,并在Advisor软件上进行了仿真分析. 与常用的比例制动控制策略相比,该控制策略能充分利用电机的制动转矩,大幅提高制动能量的回收;同时也很好地满足了制动稳定性要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号