首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
随着城市隧道建设环境的日益复杂,很多矩形隧道不再具备明挖条件,而采用顶管施工,合理预测矩形顶管施工引起的地表沉降是工程成败的决定性因素之一.依托苏州地铁5号线某车站矩形顶管工程,建立基于随机介质理论的地层损失模型和基于弹性力学Mindlin解的计算模型,得到矩形顶管施工引起地表沉降的计算公式.选取K34断面,对比了现场实测数据与理论计算的结果.研究结果表明:建立的矩形顶管地表沉降预测模型能较准确地预测矩形顶管引起的地表沉降,其预测值和现场实测数据的误差仅为10.6%;地层损失引起的地表沉降是总地表沉降的主要组成部分,侧摩阻力与正面顶推力占比较小;理论预测曲线的沉降槽宽度与实际沉降槽宽度较为接近,约为2~3倍隧道埋深.  相似文献   

2.
为研究小半径曲线盾构施工对周边土体地表沉降和深层水平位移的影响,采用现场实测和有限元分析法对曲线盾构施工进行全过程模拟,分析了隧道曲率半径和千斤顶不平衡推力对隧道周边土体位移的影响.研究结果表明:曲线盾构施工会造成横向地表沉降最大值位置向曲线内侧偏移,地表沉降槽呈非对称性;在曲率半径250~500 m内,地表沉降最大值及其偏移量随曲率半径的减小而增大;在左、右侧千斤顶推力比1~2.5内,地表沉降最大值及其偏移量与推力比的增大呈正相关;与直线盾构隧道不同,曲线隧道左右两侧土体水平位移变形呈非对称性,曲线外侧土体受盾壳的挤压作用,背离隧道移动;曲线内测土体因刀盘超挖,土体卸载,位移朝向隧道方向.研究结论对类似工程的施工有指导意义.  相似文献   

3.
在盾构隧道施工中,易因地层损失引起地面沉降。在PECK公式中,假定地表沉降槽面积等于地层损失,忽略了土体在开挖前后应力状态的变化而产生的变形,从而产生误差;在隧道拱顶,因土体的不均匀沉降形成土拱,部分土体自重应力被转移到邻近的土体而出现应力释放,引起土体回弹,因此土体沉降槽面积小于地层损失。基于此,本文提出了一种考虑隧道拱顶土体卸荷回弹后的沉降槽面积计算方法,并据此对PECK公式的地表沉降计算方法进行了修正。  相似文献   

4.
基于地层损失理论的盾构隧道沉降分析及控制措施研究   总被引:1,自引:1,他引:0  
对于盾构隧道施工产生的地表沉降的预测及控制一直是工程界亟待解决的难题。本文依托南京市地铁3号线明发广场站~绕城北区间隧道的工程实例,运用地层损失理论及现场监测等手段进行了盾构隧道沉降分析,并对其沉降控制措施进行了研究,结果表明:盾构隧道施工过程中引起的地层损失是导致地表沉降的主要原因;地层损失理论中的peck公式适用于粘土层和砂岩层中盾构隧道沉降预测,其精确度满足工程要求;盾构隧道沉降的影响因素较多,且在整个盾构施工过程中各个阶段产生的沉降机理、规律各不相同;通过注浆加固、严格控制盾构机姿态、管片组装质量可减小地应力损失,减小盾构施工引起的地表沉降。所得结论对于类似工程有极大借鉴意义。  相似文献   

5.
上海地区地铁隧道盾构施工地面沉降分析   总被引:33,自引:0,他引:33  
根据上海地铁明珠线浦东南路站-南浦大桥站区间隧道盾构推进引起的地面沉降的实际观测数据,分析常用的地面沉降槽计算经验公式对于上海地区软土中修建的地铁盾构隧道的适应性,提出了地铁盾构隧道横断面上地表沉降预测公式参数确定方法以及纵断面上地表沉降分布修正计算公式及其参数确定方法。应用结果表明,该计算公式能较好地预测盾构施工引起的地面沉降分布。  相似文献   

6.
由于盾构隧道开挖引起的地面沉降是一个重要而艰巨的任务,许多影响因素都必须考虑,如隧道埋深、盾构直径、盾构掘进时推力、盾构推进速率、注浆填充率、注浆压力、地层的黏聚力、摩擦角、压缩模量等.然而目前没有模型能完全反映各种因素对地面沉降的影响规律,综合考虑各种影响因素,运用遗传规划理论对地表最大沉降进行预测.利用地表沉降实测数据对模型进行测试,建立了确定盾构隧道开挖引起地表最大沉降的遗传规划模型.研究结果表明:预测值与实测值是一致的,误差小于10%.  相似文献   

7.
目的研究盾构法隧道曲线段施工过程中产生的不均匀地表沉降,提高对隧道曲线段地表沉降的预测及计算能力.方法以马来西亚吉隆坡某地铁隧道区间盾构施工为案例背景,通过现场试验、拟合计算及二维数值计算等方法,研究曲线隧道地表沉降计算,分析地表沉降、千斤顶推力等因素之间的关系.结果在经典的隧道施工地表沉降经验计算公式的基础上提出了修正公式,该修正公式更适合于预测计算曲线盾构隧道施工的地表沉降,最大误差值在4%以内.同时给出了地表不均匀沉降量与盾构不均衡推力之间的关系式.结论笔者提出的曲线盾构隧道地表沉降计算公式优于经典的地表沉降经验计算公式,可更准确的描述曲线盾构隧道施工过程中地表沉降槽的形态.  相似文献   

8.
盾构隧道施工引起的地表沉降,主要受盾构掘进参数和地层条件的影响,且各参数间关系复杂.已有地表沉降预测方法大都没有直接考虑掘进参数的影响,难以满足盾构快速施工超前预测预报和环境影响控制的需求.自适应神经模糊推理系统(ANFIS)是一种基于神经网络的模糊类智能模型,通过减法聚类数据细分技术自动生成模糊规则,使网络的节点和权值具有明确的物理意义,集成了神经网络数据自适应能力和模糊系统知识表达性能,特别适合于多元非线性系统的预测预报.结合北京地铁14号线东风北桥站至京顺路站区段工程实测数据,选取埋深、洞顶覆土标贯值、土仓压力、推进速度、刀盘转速、扭矩、盾构推力,以及同步注浆量为输入变量,建立了地表最大沉降量预测模型.计算结果表明,该模型计算量小,泛化能力强,计算精度高.研究成果为盾构施工地表沉降预测预报提供了新的技术方案.  相似文献   

9.
采用盾构法进行隧道施工,难免会引起地层移动而导致不同程度的沉降,而采用Peck公式进行沉降预测时,首先要利用实测数据对该公式进行验证,并给出适合该地域的计算参数。文章利用合肥轨道交通盾构施工中的地表监测数据对Peck公式进行验证,同时计算出沉降槽宽度参数和地层损失率,为该公式在合肥盾构施工过程中预测地表沉降值提供了依据。  相似文献   

10.
从土质隧道开挖引起洞周边土体非均匀收敛变形角度出发,提出了以隧道开挖引起周边土体非均匀收敛曲线与隧道最终衬砌断面曲线所围面积等效计算地层损失的非均匀模型,并利用上限定理及变分法推导了该模型下等效地层损失Vs的极限解析表达式;并总结归纳了沉降槽宽度系数i的近似表达统一式。最后将本文方法预测地面沉降的结果与离心机隧道模型试验结果及实际隧道工程现场监测结果进行对比,验证了(1)从收敛塑性变形角度定义及由上限定理计算地层损失Vs具有一定的有效性;(2)能较好的拟合试验和现场监测结果,表明了从围岩物理力学性质上研究地面沉降具有一定的可行性。  相似文献   

11.
由于曲线型盾构隧道卸荷扰动区的不对称性,使得隧道施工后地表沉降槽峰值出现了一定的偏移.故为便于对曲线型盾构隧道沉降峰值的偏移规律进行定性及定量分析,利用Midas/GTS有限元软件,以隧道的不同线路半径作为变量设定多个模拟工况,建立三维模型进行分析研究,且采用Origin软件对模拟的计算结果进行函数拟合;最后,依托乌鲁木齐市南农区间8标段小半径曲线盾构隧道的工程实例进行验证 研究表明:围岩变形、地表沉降峰值及地表沉降槽宽度均随曲线型隧道线路半径的增大而呈现出减小的趋势;地表沉降槽峰值点的偏移距离与隧道的线路半径关系近似反函数曲线.  相似文献   

12.
孙伟  任洋  王永刚 《科学技术与工程》2023,23(10):4339-4347
基于镜像法和Mindlin解,考虑土体损失、刀盘推力、盾壳摩擦力和注浆压力的影响,推导出类矩形盾构隧道施工在既有隧道轴线处产生的附加应力计算公式,将既有隧道简化为由剪切弹簧连接的弹性地基短梁,结合最小势能原理推导出既有隧道竖向位移计算公式。依据工程实例构建数值计算模型,对比本文计算结果和数值模拟结果,验证本文计算方法的适用性。研究结果表明:本文计算方法的结果与数值模拟结果吻合程度高,验证了本文计算方法的正确性;随着类矩形盾构隧道掘进,邻近隧道的纵向位移、环间剪切量和剪切力不断增大,在盾构机通过邻近隧道轴线20 m后趋于稳定;邻近隧道沉降变形最大处的环间剪切量和剪切力最小,沉降变形曲线反弯点处的环间剪切量和剪切力最大。  相似文献   

13.
以北京市轨道交通6号线某区间盾构隧道工程实例为背景,针对双线盾构掘进先后通过临近高层建筑物的特殊情况,首先通过FLAC3D软件对该工程进行数值模拟,分析了先后盾构掘进两条平行隧道时地表最大沉降值的位置,以及盾构掘进与临近建筑物相互作用对地表沉降的影响;其次,对盾构掘进先后穿过高层建筑物的实测数据进行了分析,获得了双线盾构顺序穿越临近高层建筑物过程中地表沉降的变化规律;最后,分析了盾构施工对临近高层建筑物的影响.结果表明:在盾构面前方20 m作用的范围内,地表略微隆起,而盾构通过40 m后地表沉降基本稳定;后行隧道引起的地表沉降大于先行隧道引起的地表沉降;临近高层建筑物在隧道沉降槽影响范围内时,盾构施工对建筑物影响较大,而与双线隧道的先后施工顺序关系不大,数值计算和实测结果相符,对类似工程有一定的借鉴和指导意义.  相似文献   

14.
为研究浅埋大直径土压平衡盾构施工穿越砂卵石地层造成的地表沉降规律,以北京新机场线9m直径土压平衡盾构隧道为背景,对10m、12m、13m、15m四种覆土厚度下的地表最大沉降、沉降槽宽度、地层损失率进行了对比分析,并用Peck公式进行拟合。分析结果表明:相同施工参数下,隧道上方地表最大沉降和地层损失率随覆土厚度增加而减小且成拱覆土厚度附近存在变化速率的突然改变;深埋隧道测点沉降稳定时间较短,约为2天,浅埋隧道时间较长,约为4天;实测沉降槽宽度及沉降槽拟合曲线的宽度系数与隧道覆土厚度相关性不明显,实测沉降槽宽度约为隧道中线两侧1.5D范围(D为开挖直径);实测地层损失率与通过Peck公式反算的地层损失率都随隧道覆土厚度增大而减小。  相似文献   

15.
由于双线隧道存在复杂的耦合作用,盾构施工引起的地表沉降规律极为复杂,所以准确计算地表沉降较为困难。本文基于Peck公式和Chapman修正参数,考虑先行隧道的施工影响和双线隧道的相对位置关系,通过参数的经验量化,建立了双线隧道地表沉降的计算公式。此外,依托苏州市轨道交通S1号线工程,讨论公式在不同土层中的适用性及参数取值范围,在此基础上采用PLAXIS 3D有限元软件对双线隧道盾构施工进行了数值模拟。结果表明:在软土地层中进行盾构施工,应用本文修正公式计算得到的地表沉降值与数值模拟和现场实测结果均较为吻合。修正公式考虑了双线隧道的位置信息,可以定量反映隧道埋深和双线隧道间距对地表沉降的影响。该研究可为软土地区双线隧道盾构施工沉降计算提供参考。  相似文献   

16.
隧道长期不均匀沉降预测的蚁群算法   总被引:5,自引:0,他引:5  
利用上海地区地铁盾构隧道运营期的大量实测沉降资料,找出其长期不均匀沉降规律与蚁群算法思想的对应关系,提出了一种基于蚁群算法的隧道长期不均匀沉降的新预测模型.为了检验新模型的预测效果,运用预测与实测数据对比分析的方式,得出新预测模型的构建及完善思路.研究结果表明,该预测模型利用实测资料直接建模,避免了传统方法计算过程中各种人为因素的干扰,预测精度高,简便易行,适应性强,可供完善的空间也很广,可为今后隧道长期不均匀沉降的预测计算提供一种全新的思路.  相似文献   

17.
在软土地层中顶管施工所引起的地面沉降常常会造成邻近建筑物和地下管线的移动甚至破坏- 通过对土与顶管的受力及变形的分析,在施工前预测特定顶管工程可能引起的地面沉降的幅度及其形态- 理论分析和现场实测显示,顶管施工时管节周围土的运动是三维的- 建立了处理上述三维问题的简便计算方法- 基于半解析元法将顶管施工中三维土运动问题转换成一维数值计算- 在轴向离散而在环向和径向取解析函数,建立了半解析单元的位移函数- 给出了包括位移函数、刚度矩阵和荷载矩阵在内的理论分析过程- 计算结果表明,半解析元法对于计算顶管施工中的地面沉降是行之有效的方法- 根据分析与计算结果得到一些有价值的结论,包括结构与土的相互作用而言,顶管管节相当于隧道的衬砌- 虽然顶管施工引起的地面沉降的沉降槽也近似于误差曲线,由于土的粘塑性变形,地面沉降的幅度在施工过程中是变化的-  相似文献   

18.
结合某地铁区间隧道盾构施工近距穿越桥梁桩基的复杂条件,选取桥台与桥墩基础影响最大断面,对盾构施工引起地表沉降及桥梁桩基的变形、应力及内力进行三维数值模拟计算。结果表明:①双线隧道盾构推进引起地表最大沉降位于双线隧道中间某处,大于单线隧道引起的地表最大沉降,地表沉降随着两条隧道间距的减小而增加;②右线隧道盾构施工引起B0C0桥台桩基近隧道边桩产生的最大变形与内力均发生在距桩顶13 m处,最大横向挠曲变形、纵向挠曲变形分别为2. 0、4. 8 cm,边桩内力致使桥台桩基超出承载能力,承台发生倾向隧道一侧的倾斜和水平面内扭转,严重影响桩基的安全;③双线隧道盾构施工引起B7C7桥墩桩基近隧道边桩桩顶处产生最大位移,最大横向水平位移、纵向水平位移分别为2. 6、5. 2 cm,右侧桥墩桩基承台产生的最大横向水平位移、竖向位移、纵向水平位移分别为3. 2、3. 4、4. 6 cm,承台发生倾向隧道一侧的倾斜和水平面内扭转,倾斜值为0. 001 8,接近规范规定的允许值,盾构施工时须引起注意。基于上述分析结果,提出盾构近距推进时的施工监测及施工参数调整的建议。  相似文献   

19.
西安黄土地层盾构施工的Peck公式修正   总被引:1,自引:0,他引:1  
以西安黄土地区某区间段地铁隧道盾构施工实测数据为基础,通过peck公式的两个重要参数,即沉降槽宽度系数K,地层土体损失率η,对Peck公式进行修正,使其能适用于黄土地区,并为今后黄土地区地铁的盾构施工提供参考依据。研究表明,修正后的沉降槽宽度系数为K=0.42~0.445,地层损失率应根据不同的地层情况和施工参数进行确定,一般情况下取η=0.82%~1.65%是合理的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号