首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Ghosh  A Antonini  S K McConnell  C J Shatz 《Nature》1990,347(6289):179-181
The neurons of layer 4 in the adult cerebral cortex receive their major ascending inputs from the thalamus. In development, however, thalamic axons arrive at the appropriate cortical area long before their target layer 4 neurons have migrated into the cortical plate. The axons accumulate and wait in the zone below the cortical plate, the subplate, for several weeks before invading the cortical plate. The subplate is a transient zone that contains the first postmitotic neurons of the telencephalon. These neurons mature well before other cortical neurons, and disappear by cell death after the thalamic axons have grown into the overlying cortical plate. The close proximity of growing thalamocortical axons and subplate neurons suggests that they might be involved in interactions important for normal thalamocortical development. Here we show that early in development the deletion of subplate neurons located beneath visual cortex prevents axons from the lateral geniculate nucleus of the thalamus from recognizing and innervating visual cortex, their normal target. In the absence of subplate neurons, lateral geniculate nucleus axons continue to grow in the white matter past visual cortex despite the presence of their target layer 4 neurons. Thus the transient subplate neurons are necessary for appropriate cortical target selection by thalamocortical axons.  相似文献   

2.
von Melchner L  Pallas SL  Sur M 《Nature》2000,404(6780):871-876
An unresolved issue in cortical development concerns the relative contributions of intrinsic and extrinsic factors to the functional specification of different cortical areas. Ferrets in which retinal projections are redirected neonatally to the auditory thalamus have visually responsive cells in auditory thalamus and cortex, form a retinotopic map in auditory cortex and have visual receptive field properties in auditory cortex that are typical of cells in visual cortex. Here we report that this cross-modal projection and its representation in auditory cortex can mediate visual behaviour. When light stimuli are presented in the portion of the visual field that is 'seen' only by this projection, 'rewired' ferrets respond as though they perceive the stimuli to be visual rather than auditory. Thus the perceptual modality of a neocortical region is instructed to a significant extent by its extrinsic inputs. In addition, gratings of different spatial frequencies can be discriminated by the rewired pathway, although the grating acuity is lower than that of the normal visual pathway.  相似文献   

3.
Olsen SR  Bortone DS  Adesnik H  Scanziani M 《Nature》2012,483(7387):47-52
After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.  相似文献   

4.
Mixed parvocellular and magnocellular geniculate signals in visual area V4.   总被引:5,自引:0,他引:5  
V P Ferrera  T A Nealey  J H Maunsell 《Nature》1992,358(6389):756-761
Visual information from the retina is transmitted to the cerebral cortex by way of the lateral geniculate nucleus (LGN) in the thalamus. In primates, most of the retinal ganglion cells that project to the LGN belong to one of two classes, P and M, whose axons terminate in the parvocellular or magnocellular subdivisions of the LGN. These cell classes give rise to two channels that have been distinguished anatomically, physiologically and behaviourally. The visual cortex also can be subdivided into two pathways, one specialized for motion processing and the other for colour and form information. Several lines of indirect evidence have suggested a close correspondence between the subcortical and cortical pathways, such that the M channel provides input to the motion pathway and the P channel drives the colour/form pathway. This hypothesis was tested directly by selectively inactivating either the magnocellular or parvocellular subdivision of the LGN and recording the effects on visual responses in the cortex. We have previously reported that, in accordance with the hypothesis, responses in the motion pathway in the cortex depend primarily on magnocellular LGN. We now report that in the colour/form pathway, visual responses depend on both P and M input. These results argue against a simple correspondence between the subcortical and cortical pathways.  相似文献   

5.
The cerebral cortex develops through the coordinated generation of dozens of neuronal subtypes, but the mechanisms involved remain unclear. Here we show that mouse embryonic stem cells, cultured without any morphogen but in the presence of a sonic hedgehog inhibitor, recapitulate in vitro the major milestones of cortical development, leading to the sequential generation of a diverse repertoire of neurons that display most salient features of genuine cortical pyramidal neurons. When grafted into the cerebral cortex, these neurons develop patterns of axonal projections corresponding to a wide range of cortical layers, but also to highly specific cortical areas, in particular visual and limbic areas, thereby demonstrating that the identity of a cortical area can be specified without any influence from the brain. The discovery of intrinsic corticogenesis sheds new light on the mechanisms of neuronal specification, and opens new avenues for the modelling and treatment of brain diseases.  相似文献   

6.
I M Blythe  J M Bromley  C Kennard  K H Ruddock 《Nature》1986,320(6063):619-621
Damage to the striate cortex usually causes blindness in those regions of the visual field which map to the area of neural damage. Nonetheless, there are reports that some patients with such damage can localize and perform certain visual discriminations between light stimuli presented within the 'blind' area of the visual field. Experiments on animals with different brain areas ablated suggest that visual function is served by two principal projection pathways from the retina. That to the striate cortex is primarily responsible for fine discrimination between stimulus parameters such as colour and spatial pattern, whereas that to the superior colliculus in the midbrain is responsible for visual localization of stimuli. The residual visual functions in patients with cortical damage are usually attributed to the non-striate retinal projection to the superior colliculus. We now present measurements of spatial discrimination in two observers with large visual field defects (scotomata) caused by damage to the striate cortical region. Both exhibit a near normal ability to discriminate displacements of targets when two lights are flashed sequentially in their defective visual field, but they are unable to discriminate spatial pattern or size. We argue that these results are consistent with the 'two visual systems' interpretation of ablation studies on non-human species.  相似文献   

7.
Patients with damage to the striate cortex have a subjectively blind region of the visual field, but may still be able to detect and localize targets within this region. But the relative roles in this 'blindsight' of subcortical neural systems, and of pathways to extra-striate visual areas, have been uncertain. Here we report results on two infants in whom one cerebral hemisphere, including both striate and extra-striate visual cortex, needed surgical removal in their first year. Single conspicuous targets in the half-field contralateral to the lesion could elicit fixations, implying detection and orienting by a subcortical system. In contrast, binocular optokinetic nystagmus (OKN), for which a subcortical pathway has often been thought adequate, showed a marked asymmetry. In normal neonates, fixation shifts and OKN have both been taken to reflect subcortical control; our results are consistent with subcortical control for fixation but not for OKN.  相似文献   

8.
G Jeffery 《Nature》1985,313(6003):575-576
In mammals, the major subcortical visual structures receive projections from both eyes, with the uncrossed projection being smaller than the crossed. Each projection is arranged as a separate orderly map of one hemiretina. Although these hemiretinal maps are separate in the nuclei, they are aligned so that the representations of points in the visual field are in register, thus there is a continuity of visual field representation between them. During the early development of the binocular pathways, terminals from the two eyes overlap almost entirely. As development proceeds, terminals arising from each eye segregate to form the adult pattern. In the present study, local retinal lesions were made in ferrets at various stages in development before the separation of the projections from the two eyes. A neuronal tracer was then injected into the damaged eye, defining the pattern of projection from that eye. As reported here, the lesion resulted in a limited interruption in the pattern of terminal label on both sides of the brain, demonstrating that terminals from each eye are arranged in an orderly retinotopic manner at this stage. hence, during later development, as one projection is reduced relative to the other, the two maps must slide in relation to each other.  相似文献   

9.
Z Molnár  C Blakemore 《Nature》1991,351(6326):475-477
The mammalian cerebral cortex consists of many structurally and functionally specialized areas, with characteristic input from particular nuclei of the thalamus. Some localized external influence, such as the arrival of fibres from the appropriate thalamic nucleus before or around the time of birth, could trigger the emergence of committed cortical fields from an undifferentiated 'protocortex. The guidance of axons from each thalamic nucleus to its appropriate target area in the cortex could, then, be crucial in the regulation of cortical differentiation. Recently, Yamamoto et al. and Bolz et al. have demonstrated that cocultured explants of rat lateral geniculate nucleus and visual cortex can form layer-specific interconnections. We have now tested the possibility that each cortical area exerts a selective trophic influence on axons from its appropriate thalamic nucleus, and vice versa, by coculturing explants of different regions of the thalamus and cortex taken at various stages of development. Although thalamo-cortical and cortico-thalamic connections formed in vitro can be remarkably normal in many respects, they lack regional specificity.  相似文献   

10.
B B Stanfield  D D O'Leary  C Fricks 《Nature》1982,298(5872):371-373
The pyramidal tract, comprising those axons which pass from the neocortex to the medulla and spinal cord, is among the most thoroughly studied projections of the mammalian cortex. Recent studies using anterograde axon tracing techniques have provided information concerning the time course of the growth of pyramidal tract fibres, yet much remains to be learned about its development. We have now begun to study the distribution of the neurones of origin of the pyramidal tract during the postnatal development of the rat neocortex using the recently introduced retrogradely transported fluorescent marker, True blue. During the first postnatal week, injections of True blue into the pyramidal decussation result inthe labelling of pyramidal tract neurones which are distributed virtually throughout the tangential extent of layer V of the neocortex, whereas after comparable injections during the fourth postnatal week the distribution of such cells is much more restricted and remains restricted into adult life. This developmental restriction is most dramatic in the occipital cortex: during the first postnatal week many pyramidal tract neurones are found throughout the visual cortex while none is seen in this area of the adult. When True blue is injected into the pyramidal decussation during the first postnatal week and the animals are allowed to survive until the fourth postnatal week, the distribution of pyramidal tract neurones is as widespread as in the immediate postnatal period and includes the entire visual cortex. This implies that many of the neurones in the occipital cortex initially send a collateral into the pyramidal tract which is later eliminated, although the neurones themselves persist. These findings, together with similar recent observations on the development of the callosal connections, indicate that the elimination of axon collaterals may be a general feature of the development of cortical projection systems, and that such transitory collaterals may traverse considerable distances.  相似文献   

11.
B B Stanfield  D D O'Leary 《Nature》1985,313(5998):135-137
In adult rats, cortical neurones that send axons through the pyramidal tract are confined to layer V, over the rostral two-thirds of the cerebral hemisphere. However, during the first postnatal week, many neurones in layer V in the occipital cortex (including the visual cortex) also extend axon collaterals through the pyramidal tract and into the spinal cord. These occipital corticospinal collaterals are completely eliminated over the subsequent 2 weeks, although their cells of origin do not die. We now report that when portions of the occipital cortex from fetal rats are transplanted to more rostral cortical regions of newborn rats, some of the transplanted neurones not only extend axons through the pyramidal tract, but also maintain these axons beyond the stage at which they are normally eliminated. These results suggest that normally-eliminated cortical axons can be 'rescued' and, in the case of pyramidal tract neurones, the position of the neurones within the tangential plane of the cortex is a critical factor in determining which neurones retain and which lose their pyramidal tract collaterals.  相似文献   

12.
Chatterjee S  Callaway EM 《Nature》2003,426(6967):668-671
The trichromatic primate retina parses the colour content of a visual scene into 'red/green' and 'blue/yellow' representations. Cortical circuits must combine the information encoded in these colour-opponent signals to reconstruct the full range of perceived colours. Red/green and blue/yellow inputs are relayed by the lateral geniculate nucleus (LGN) of thalamus to primary visual cortex (V1), so understanding how cortical circuits transform these signals requires understanding how LGN inputs to V1 are organized. Here we report direct recordings from LGN afferent axons in muscimol-inactivated V1. We found that blue/yellow afferents terminated exclusively in superficial cortical layers 3B and 4A, whereas red/green afferents were encountered only in deeper cortex, in lower layer 4C. We also describe a distinct cortical target for 'blue-OFF' cells, whose afferents terminated in layer 4A and seemed patchy in organization. The more common 'blue-ON' afferents were found in 4A as well as lower layer 2/3. Chromatic information is thus conveyed to V1 by parallel, anatomically segregated colour-opponent systems, to be combined at a later stage of the colour circuit.  相似文献   

13.
E A DeYoe  D C Van Essen 《Nature》1985,317(6032):58-61
V2 is a visual area of the macaque monkey which is at the second level in a recently proposed hierarchy of cortical visual areas. Histochemical staining for cytochrome oxidase (CO) in V2 reveals a pattern of alternate thick and thin CO-rich stripes separated by CO-sparse interstripes. These subregions receive distinct inputs from neurones in CO-rich and CO-sparse zones arrayed within the superficial layers of V1 (refs 4, 5). Are output projections from V2 to higher visual areas also segregated? Using an anatomical double-label paradigm, we have now demonstrated that V2 cells projecting to two of its major target areas, MT and V4 (refs 6, 7), are arranged in stripe-like clusters which are largely segregated from one another and which are closely related to the pattern of CO stripes. Concomitant electrophysiological recordings from V2 indicate that groups of cells having similar receptive field properties are clustered within the subregions defined by these anatomical techniques.  相似文献   

14.
J S Eisen  P Z Myers  M Westerfield 《Nature》1986,320(6059):269-271
How is the adult pattern of connections between motoneurones and the muscles that they innervate established during vertebrate development? Populations of motoneurones are thought to follow one of two patterns of development: (1) motor axons initially follow stereotyped pathways and project to appropriate regions of the developing muscle or (2) motor axons initially project to some regions that are incorrect, the inappropriate projections being eliminated subsequently. Here we observed individually identified motoneurones in live zebra fish embryos as they formed growth cones and as their growth cones navigated towards their targets. We report that from axogenesis, each motor axon followed a stereotyped pathway and projected only to the specific region of the muscle appropriate for its adult function. In addition, the peripheral arbor established by each motoneurone was restricted to a stereotyped region of its own segment and did not overlap with the peripheral arbor of the other motoneurones in that segment. We conclude that the highly stereotyped pattern of innervation seen in the adult is due to initial selection of the appropriate pathway, rather than elimination of incorrect projections.  相似文献   

15.
L C Katz  A Burkhalter  W J Dreyer 《Nature》1984,310(5977):498-500
The use of retrograde axonal transport of various substances (for example, enzymes, lectins, synthetic fluorescent compounds) has yielded much information on the organization of neuronal pathways. Each type of retrograde tracer has its own set of attributes which define the scope of problems it can address. We describe here a new class of retrograde tracer, rhodamine-labelled fluorescent latex microspheres (0.02-0.2 micron diameter), which have distinct advantages over other available tracers for in vivo and in vitro applications. When injected into brain tissue, these microspheres show little diffusion and consequently produce small, sharply defined injection sites. Once transported back to neuronal somata, the label persists for at least 10 weeks in vivo and 1 yr after fixation. Microspheres have no obvious cytotoxicity or phototoxicity as assessed by intracellular recording and staining of retrogradely labelled cells in a cortical brain slice preparation. This approach was further used to visualize and compare, in cat visual cortex slices, neurones with different projection patterns, and revealed significant differences in patterns of intrinsic axons and dendrites. These properties of microspheres open new avenues for anatomical and physiological studies of identified projection neurones in slices as well as in dissociated cell cultures.  相似文献   

16.
H Wang  M Tessier-Lavigne 《Nature》1999,401(6755):765-769
During development, neurons extend axons to their targets, then become dependent for their survival on trophic substances secreted by their target cells. Competition for limiting amounts of these substances is thought to account for much of the extensive naturally-occurring cell death that is seen throughout the nervous system. Here we show that spinal commissural neurons, a group of long projection neurons in the central nervous system (CNS), are also dependent for their survival on trophic support from one of their intermediate targets, the floor plate of the spinal cord. This dependence occurs during a several-day-long period when their axons extend along the floor plate, following which they develop additional trophic requirements. A dependence of neurons on trophic support derived en passant from their intermediate axonal targets provides a mechanism for rapidly eliminating misprojecting neurons, which may help to prevent the formation of aberrant neuronal circuits during the development of the nervous system.  相似文献   

17.
M P Young 《Nature》1992,358(6382):152-155
The primate cortical visual system is composed of many structurally and functionally distinct areas, each receiving and sending about 10 projections from and to other cortical areas. The visual cortex is thus served by many cortico-cortical connections to form a network of considerable complexity. Thus the gross organization of this cortical processing system presents a formidable topological problem: although the spatial position of the areas in the brain is reasonably well established, the gross 'processing architecture' defined by the connections, is less well understood. Here I report an optimization approach that gives both qualitative and quantitative insight into the connectional topology of the primate cortical visual system. This approach supports suggestions that the system is divided into a dorsal 'stream' and a ventral 'stream' with limited cross-talk, that these two streams reconverge in the region of the principal sulcus (area 46) and in the superior temporal polysensory areas, that the system is hierarchically organized, and that the majority of the connections are from 'nearest-neighbour' and 'next-door-but-one' areas.  相似文献   

18.
19.
Sosulski DL  Bloom ML  Cutforth T  Axel R  Datta SR 《Nature》2011,472(7342):213-216
Sensory information is transmitted to the brain where it must be processed to translate stimulus features into appropriate behavioural output. In the olfactory system, distributed neural activity in the nose is converted into a segregated map in the olfactory bulb. Here we investigate how this ordered representation is transformed in higher olfactory centres in mice. We have developed a tracing strategy to define the neural circuits that convey information from individual glomeruli in the olfactory bulb to the piriform cortex and the cortical amygdala. The spatial order in the bulb is discarded in the piriform cortex; axons from individual glomeruli project diffusely to the piriform without apparent spatial preference. In the cortical amygdala, we observe broad patches of projections that are spatially stereotyped for individual glomeruli. These projections to the amygdala are overlapping and afford the opportunity for spatially localized integration of information from multiple glomeruli. The identification of a distributive pattern of projections to the piriform and stereotyped projections to the amygdala provides an anatomical context for the generation of learned and innate behaviours.  相似文献   

20.
Induction of functional retinal projections to the somatosensory system   总被引:3,自引:0,他引:3  
D O Frost  C Metin 《Nature》1985,317(6033):162-164
Optic axons can be induced to form permanent, retinotopic connections in the auditory (medial geniculate, MG) and somatosensory (ventrobasal, VB) nuclei of the Syrian hamster thalamus; this occurs when the principal targets of retinofugal axons are ablated in newborn hamsters and alternative terminal space is created by partial deafferentation of MG or VB. The experimentally induced retinal projection to the somatosensory nucleus occurs by the stabilization of an early, normally transient projection. The present study was undertaken to determine whether the anomalous, stabilized retino-VB projection is functional. Newborn hamsters were operated on to produce permanent retino-VB projections and when the animals were mature, neurophysiological recordings were made in the cortical targets of VB, the first and second somatosensory cortices (SI and SII, respectively). Visual stimulation within well-defined receptive fields reliably evoked multi-unit responses in SI and SII of operated, but not normal hamsters. The representations of the visual field in SI and SII showed a partially retinotopic organization. These results demonstrate that optic tract axons can form functional synapses in the thalamic somatosensory nucleus, and suggest that neural structures which normally process information specific to one sensory modality have the potential to mediate function for other modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号