首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
D Sretavan  C J Shatz 《Nature》1984,308(5962):845-848
When connections are first formed during the development of the vertebrate nervous system, inputs from different sources are frequently intermixed and the specific adult pattern then emerges as the different inputs segregate from each other. During the prenatal development of connections between retina and lateral geniculate nucleus (LGN) in the cat, the projections from the two eyes initially overlap with each other within the LGN. Over the next 3 weeks a reduction in the amount of overlap occurs so that by birth, a segregated pattern similar to the adult is present. We report here that during the period of overlap, individual retinogeniculate axons are simple in shape and restricted in extent without any widespread branches. Further, the appearance of the segregated pattern of eye input is accompanied by the elaboration of extensive new axonal arbors within appropriate LGN territory accompanied by retraction of only a limited number of minor branches. This developmental strategy contrasts with that in other regions of the vertebrate central nervous system in which the orderly adult pattern of connections within a target is achieved by a relative reduction in the overall extent of the axon arbor.  相似文献   

2.
C E Holt  W A Harris 《Nature》1983,301(5896):150-152
Retinal nerve fibres form an orderly map of visual space in several centres in the vertebrate brain. Such topographic maps are a common feature of central nervous system organization, yet the way in which they develop is poorly understood. Early nerve projections in the fetal and neonatal mammalian brain have been found in several cases to be less restricted than those in the adult, suggesting that nerve fibres may initially form a diffuse set of connections in their target structure from which the adult map is sculpted by the elimination of terminals. Indeed, previous electrophysiological data indicate that the retinotectal map in Xenopus laevis might be initially disorganized. We report here, however, that the retinotectal projection is ordered from the beginning of tectal innervation (stage 39/40). We demonstrate this first autoradiographically by tracing groups of growing ganglion cell axons which we labelled by incubating sectors of eye rudiments, before axonal outgrowth, in 3H-proline and replacing them orthotopically. Separate labelling of dorsal and ventral parts of the initial projection showed that retinal fibres are organized topographically, as in the adult, in the tectal rudiment and throughout much of the pathway. Second, we show that visual responses are ordered in the tectum from the first stage that they can be mapped (stage 40). We conclude that the topographic ordering of retinotectal connections develops as a result of directed axonal outgrowth.  相似文献   

3.
C Dehay  G Horsburgh  M Berland  H Killackey  H Kennedy 《Nature》1989,337(6204):265-267
In several species, the peripheral input from the eyes partly determines the pattern of interconnections between the visual areas of the two cerebral hemispheres through the fibre tract termed the corpus callosum. In the macaque monkey, the neurons projecting through the callosum are largely restricted to area 18 throughout ontogeny, whereas area 17 is characterized by few or no callosal projections. Here, we show that suppressing the peripheral input by prenatal removal of the eyes leads to a marked reduction in the extent of area 17, resulting in a large shift in the position of the histologically identifiable boundary between the two areas. Even so, the boundary continues to separate an area rich with callosal connections (area 18) from one poor in such projections (area 17), indicating there is no effect on the callosal connectivity of area 17. In contrast, in area 18, eye removal results in many more neurons with callosal projections than in normal animals. The results suggest that the factors that determine the parcellation of cortical areas also specify their connectivity.  相似文献   

4.
D W Sretavan  C J Shatz  M P Stryker 《Nature》1988,336(6198):468-471
The cellular mechanisms by which the axons of individual neurons achieve their precise terminal branching patterns are poorly understood. In the visual system of adult cats, retinal ganglion cell axons from each eye form narrow cylindrical terminal arborizations restricted to alternate non-overlapping layers within the lateral geniculate nucleus (LGN). During prenatal development, axon arborizations from the two eyes are initially simple in shape and are intermixed with each other; they then gradually segregate to form complex adult-like arborizations in separate eye-specific layers by birth. Here we report that ganglion cell axons exposed to tetrodotoxin (TTX) to block neuronal activity during fetal life fail to form the normal pattern of terminal arborization. Individual TTX-treated axon arborizations are not stunted in their growth, but instead produce abnormally widespread terminal arborizations which extend across the equivalent of approximately two eye-specific layers. These observations suggest that during fetal development of the central nervous system, the formation of morphologically appropriate and correctly located axon terminal arborizations within targets is brought about by an activity-dependent process.  相似文献   

5.
J Bolz  N Novak  M G?tz  T Bonhoeffer 《Nature》1990,346(6282):359-362
A characteristic feature of the mammalian cortex is that projection neurons located in distinct cortical layers send their axons to different targets. In visual cortex, cells in layers 2 and 3 project to other cortical areas, whereas cells in layers 5 and 6 project to subcortical targets such as the lateral geniculate nucleus. The proper development of these projections is crucial for correct functioning of the visual system. Here we show that specific connections are established in an organotypic culture system in which rat visual cortex slices are co-cultured with another slice of the visual cortex or with a thalamic slice. The laminar origin and cellular morphology in vitro of cortical projections to other cortical regions or to subcortical targets are remarkably similar to those seen in vivo. In addition, axons of projecting cells are not restricted to particular pathways, but appear instead to grow directly towards their appropriate target. These observations raise the possibility that chemotropic attraction from the target areas may play an important part in the development of the cortical projection pattern.  相似文献   

6.
Parallel processing of motion and colour information   总被引:1,自引:0,他引:1  
T Carney  M Shadlen  E Switkes 《Nature》1987,328(6131):647-649
When the two eyes are confronted with sufficiently different versions of the visual environment, one or the other eye dominates perception in alternation. A similar situation may be created in the laboratory by presenting images to the left and right eyes which differ in orientation or colour. Although perception is dominated by one eye during rivalry, there are a number of instances in which visual processes nevertheless continue to integrate information from the suppressed eye. For example the interocular transfer of the motion after-effect is undiminished when induced during binocular rivalry. Thus motion information processing may occur in parallel with the rivalry process. Here we describe a novel example in which the visual system simultaneously exhibits binocular rivalry and vision that integrates signals from both eyes. This apparent contradiction is resolved by postulating parallel visual processes devoted to the analyses of colour and motion information. Counterphased gratings are viewed dichoptically such that for one eye the grating is composed of alternating yellow and black stripes (luminance) while for the other it is composed of alternating red and green stripes (chrominance). When the gratings are fused, a moving grating is perceived. A consistent direction of motion can only be achieved if left and right monocular signals are integrated by the nervous system. Yet the apparent colour of the binocular percept alternates between red-green and yellow-black. These observations demonstrate the segregation of processing by the early motion system from that affording the perception of colour. Although, in this stimulus, colour information in itself can play no part in the cyclopean perception of motion direction, colour is carried along perceptually (filled in) by the moving pattern which is integrated from both eyes.  相似文献   

7.
E A DeYoe  D C Van Essen 《Nature》1985,317(6032):58-61
V2 is a visual area of the macaque monkey which is at the second level in a recently proposed hierarchy of cortical visual areas. Histochemical staining for cytochrome oxidase (CO) in V2 reveals a pattern of alternate thick and thin CO-rich stripes separated by CO-sparse interstripes. These subregions receive distinct inputs from neurones in CO-rich and CO-sparse zones arrayed within the superficial layers of V1 (refs 4, 5). Are output projections from V2 to higher visual areas also segregated? Using an anatomical double-label paradigm, we have now demonstrated that V2 cells projecting to two of its major target areas, MT and V4 (refs 6, 7), are arranged in stripe-like clusters which are largely segregated from one another and which are closely related to the pattern of CO stripes. Concomitant electrophysiological recordings from V2 indicate that groups of cells having similar receptive field properties are clustered within the subregions defined by these anatomical techniques.  相似文献   

8.
对来自不同比例尺地图的数据进行综合是每个GIS应用系统所必需的,而进行数据综合的关键是要解决具有不同投影坐标系的各种地理要素的投影问题。GIS核心软件一般都具有投影转移功能,但不能解决所有的投影转换问题,因为各国所采用的投影方法具有较大差别。ARC/INFO的Project模块无法对我国地形图普遍采用的高期-克吕格投影方法具有较大差别。  相似文献   

9.
Ohki K  Chung S  Ch'ng YH  Kara P  Reid RC 《Nature》2005,433(7026):597-603
Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100 microm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400 microm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.  相似文献   

10.
Kay JN  Chu MW  Sanes JR 《Nature》2012,483(7390):465-469
In many parts of the nervous system, neuronal somata display orderly spatial arrangements. In the retina, neurons of numerous individual subtypes form regular arrays called mosaics: they are less likely to be near neighbours of the same subtype than would occur by chance, resulting in 'exclusion zones' that separate them. Mosaic arrangements provide a mechanism to distribute each cell type evenly across the retina, ensuring that all parts of the visual field have access to a full set of processing elements. Remarkably, mosaics are independent of each other: although a neuron of one subtype is unlikely to be adjacent to another of the same subtype, there is no restriction on its spatial relationship to neighbouring neurons of other subtypes. This independence has led to the hypothesis that molecular cues expressed by specific subtypes pattern mosaics by mediating homotypic (within-subtype) short-range repulsive interactions. So far, however, no molecules have been identified that show such activity, so this hypothesis remains untested. Here we demonstrate in mouse that two related transmembrane proteins, MEGF10 and MEGF11, have critical roles in the formation of mosaics by two retinal interneuron subtypes, starburst amacrine cells and horizontal cells. MEGF10 and 11 and their invertebrate relatives Caenorhabditis elegans CED-1 and Drosophila Draper have hitherto been studied primarily as receptors necessary for engulfment of debris following apoptosis or axonal injury. Our results demonstrate that members of this gene family can also serve as subtype-specific ligands that pattern neuronal arrays.  相似文献   

11.
Tong F  Engel SA 《Nature》2001,411(6834):195-199
To understand conscious vision, scientists must elucidate how the brain selects specific visual signals for awareness. When different monocular patterns are presented to the two eyes, they rival for conscious expression such that only one monocular image is perceived at a time. Controversy surrounds whether this binocular rivalry reflects neural competition among pattern representations or monocular channels. Here we show that rivalry arises from interocular competition, using functional magnetic resonance imaging of activity in a monocular region of primary visual cortex corresponding to the blind spot. This cortical region greatly prefers stimulation of the ipsilateral eye to that of the blind-spot eye. Subjects reported their dominant percept while viewing rivalrous orthogonal gratings in the visual location corresponding to the blind spot and its surround. As predicted by interocular rivalry, the monocular blind-spot representation was activated when the ipsilateral grating became perceptually dominant and suppressed when the blind-spot grating became dominant. These responses were as large as those observed during actual alternations between the gratings, indicating that rivalry may be fully resolved in monocular visual cortex. Our findings provide the first physiological evidence, to our knowledge, that interocular competition mediates binocular rivalry, and indicate that V1 may be important in the selection and expression of conscious visual information.  相似文献   

12.
von Melchner L  Pallas SL  Sur M 《Nature》2000,404(6780):871-876
An unresolved issue in cortical development concerns the relative contributions of intrinsic and extrinsic factors to the functional specification of different cortical areas. Ferrets in which retinal projections are redirected neonatally to the auditory thalamus have visually responsive cells in auditory thalamus and cortex, form a retinotopic map in auditory cortex and have visual receptive field properties in auditory cortex that are typical of cells in visual cortex. Here we report that this cross-modal projection and its representation in auditory cortex can mediate visual behaviour. When light stimuli are presented in the portion of the visual field that is 'seen' only by this projection, 'rewired' ferrets respond as though they perceive the stimuli to be visual rather than auditory. Thus the perceptual modality of a neocortical region is instructed to a significant extent by its extrinsic inputs. In addition, gratings of different spatial frequencies can be discriminated by the rewired pathway, although the grating acuity is lower than that of the normal visual pathway.  相似文献   

13.
I M Blythe  J M Bromley  C Kennard  K H Ruddock 《Nature》1986,320(6063):619-621
Damage to the striate cortex usually causes blindness in those regions of the visual field which map to the area of neural damage. Nonetheless, there are reports that some patients with such damage can localize and perform certain visual discriminations between light stimuli presented within the 'blind' area of the visual field. Experiments on animals with different brain areas ablated suggest that visual function is served by two principal projection pathways from the retina. That to the striate cortex is primarily responsible for fine discrimination between stimulus parameters such as colour and spatial pattern, whereas that to the superior colliculus in the midbrain is responsible for visual localization of stimuli. The residual visual functions in patients with cortical damage are usually attributed to the non-striate retinal projection to the superior colliculus. We now present measurements of spatial discrimination in two observers with large visual field defects (scotomata) caused by damage to the striate cortical region. Both exhibit a near normal ability to discriminate displacements of targets when two lights are flashed sequentially in their defective visual field, but they are unable to discriminate spatial pattern or size. We argue that these results are consistent with the 'two visual systems' interpretation of ablation studies on non-human species.  相似文献   

14.
R Insausti  C Blakemore  W M Cowan 《Nature》1984,308(5957):362-365
In rats and hamsters all parts of the superior colliculus (SC) receive a topographically organized projection from the retina of the contralateral eye, and the rostral part also has a direct input from the lower temporal crescent of the ipsilateral retina, which views the central, binocular portion of the visual field. Initially the uncrossed projection covers the entire SC, but over the first 2 weeks of postnatal life it becomes progressively restricted to its adult distribution. However, if the opposite eye is removed at birth there is a persistent widespread uncrossed projection to the SC. We have used short- and long-term retrogradely transported neuronal markers to examine the distribution and fate of the ganglion cells of origin of the uncrossed retino-collicular projection throughout postnatal development. We conclude that the withdrawal of the early exuberant projection to the caudal SC is associated with death of ganglion cells and their virtual elimination outside the temporal crescent of the ipsilateral retina. Early enucleation of the other eye rescues many of these cells.  相似文献   

15.
Lateralization of brain functions, once believed to be a human characteristic, has now been found to be widespread among vertebrates. In birds, asymmetries of visual functions are well studied, with each hemisphere being specialized for different tasks. Here we report lateralized functions of the birds' visual system associated with magnetoperception, resulting in an extreme asymmetry of sensing the direction of the magnetic field. We found that captive migrants tested in cages with the magnetic field as the only available orientation cue were well oriented in their appropriate migratory direction when using their right eye only, but failed to show a significant directional preference when using their left eye. This implies that magnetoreception for compass orientation, assumed to take place in the eyes alongside the visual processes, is strongly lateralized, with a marked dominance of the right eye/left brain hemisphere.  相似文献   

16.
Ohki K  Chung S  Kara P  Hübener M  Bonhoeffer T  Reid RC 《Nature》2006,442(7105):925-928
In the visual cortex of higher mammals, neurons are arranged across the cortical surface in an orderly map of preferred stimulus orientations. This map contains 'orientation pinwheels', structures that are arranged like the spokes of a wheel such that orientation changes continuously around a centre. Conventional optical imaging first demonstrated these pinwheels, but the technique lacked the spatial resolution to determine the response properties and arrangement of cells near pinwheel centres. Electrophysiological recordings later demonstrated sharply selective neurons near pinwheel centres, but it remained unclear whether they were arranged randomly or in an orderly fashion. Here we use two-photon calcium imaging in vivo to determine the microstructure of pinwheel centres in cat visual cortex with single-cell resolution. We find that pinwheel centres are highly ordered: neurons selective to different orientations are clearly segregated even in the very centre. Thus, pinwheel centres truly represent singularities in the cortical map. This highly ordered arrangement at the level of single cells suggests great precision in the development of cortical circuits underlying orientation selectivity.  相似文献   

17.
Left neglect for near but not far space in man   总被引:16,自引:0,他引:16  
P W Halligan  J C Marshall 《Nature》1991,350(6318):498-500
It has been suggested that, among the many visual areas of the human brain, there might be one set of spatial maps specialized for 'near' (peripersonal) and another for 'far' (extrapersonal) space. A distinction between 'grasping distance' and 'walking distance', or between a 'reaching field' and a pointing or throwing field has commonly been made. Evidence for such a division has been found in monkeys. Unilateral ablation of the frontal eye field (area 8) produces a more prominent inattention (or 'neglect') for objects in contralesional far space than in near space; by contrast, unilateral ablation of frontal area 6, which receives direct projections from area 7b (the rostral part of the inferior parietal lobules) results in inattention to visual stimuli limited to contralesional near space. Despite predictions that comparable dissociations should be found in man, there has been no convincing evidence. We report here such evidence in a patient with a unilateral right hemisphere stroke. Within peripersonal space, he showed severe left visuo-spatial neglect on conventional tests, including the highly sensitive task of line bisection. When line bisection was performed in extrapersonal space, neglect was abolished or attenuated.  相似文献   

18.
J S Eisen  P Z Myers  M Westerfield 《Nature》1986,320(6059):269-271
How is the adult pattern of connections between motoneurones and the muscles that they innervate established during vertebrate development? Populations of motoneurones are thought to follow one of two patterns of development: (1) motor axons initially follow stereotyped pathways and project to appropriate regions of the developing muscle or (2) motor axons initially project to some regions that are incorrect, the inappropriate projections being eliminated subsequently. Here we observed individually identified motoneurones in live zebra fish embryos as they formed growth cones and as their growth cones navigated towards their targets. We report that from axogenesis, each motor axon followed a stereotyped pathway and projected only to the specific region of the muscle appropriate for its adult function. In addition, the peripheral arbor established by each motoneurone was restricted to a stereotyped region of its own segment and did not overlap with the peripheral arbor of the other motoneurones in that segment. We conclude that the highly stereotyped pattern of innervation seen in the adult is due to initial selection of the appropriate pathway, rather than elimination of incorrect projections.  相似文献   

19.
Until recently, intricate details of the optical design of non-biomineralized arthropod eyes remained elusive in Cambrian Burgess-Shale-type deposits, despite exceptional preservation of soft-part anatomy in such Konservat-Lagerst?tten. The structure and development of ommatidia in arthropod compound eyes support a single origin some time before the latest common ancestor of crown-group arthropods, but the appearance of compound eyes in the arthropod stem group has been poorly constrained in the absence of adequate fossils. Here we report 2-3-cm paired eyes from the early Cambrian (approximately 515 million years old) Emu Bay Shale of South Australia, assigned to the Cambrian apex predator Anomalocaris. Their preserved visual surfaces are composed of at least 16,000 hexagonally packed ommatidial lenses (in a single eye), rivalling the most acute compound eyes in modern arthropods. The specimens show two distinct taphonomic modes, preserved as iron oxide (after pyrite) and calcium phosphate, demonstrating that disparate styles of early diagenetic mineralization can replicate the same type of extracellular tissue (that is, cuticle) within a single Burgess-Shale-type deposit. These fossils also provide compelling evidence for the arthropod affinities of anomalocaridids, push the origin of compound eyes deeper down the arthropod stem lineage, and indicate that the compound eye evolved before such features as a hardened exoskeleton. The inferred acuity of the anomalocaridid eye is consistent with other evidence that these animals were highly mobile visual predators in the water column. The existence of large, macrophagous nektonic predators possessing sharp vision--such as Anomalocaris--within the early Cambrian ecosystem probably helped to accelerate the escalatory 'arms race' that began over half a billion years ago.  相似文献   

20.
Correlated binocular activity guides recovery from monocular deprivation   总被引:4,自引:0,他引:4  
Monocular deprivation (MD) has much more rapid and severe effects on the ocular dominance of neurons in the primary visual cortex (V1) than does binocular deprivation. This finding underlies the widely held hypothesis that the developmental plasticity of ocular dominance reflects competitive interactions for synaptic space between inputs from the two eyes. According to this view, the relative levels of evoked activity in afferents representing the two eyes determine functional changes in response to altered visual experience. However, if the deprived eye of a monocularly deprived kitten is simply reopened, there is substantial physiological and behavioural recovery, leading to the suggestion that absolute activity levels, or some other non-competitive mechanisms, determine the degree of recovery from MD. Here we provide evidence that correlated binocular input is essential for such recovery. Recovery is far less complete if the two eyes are misaligned after a period of MD. This is a powerful demonstration of the importance of cooperative, associative mechanisms in the developing visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号