首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
贺薇  李原芳  谭克俊  黄承志 《科学通报》2007,52(24):2840-2845
利用等离子共振光散射(PRLS)、等离子共振吸收、扫描电子显微镜和动态光散射技术研究了金纳米棒与肝素的相互作用. 结果表明, 在溶液中, 金纳米棒呈分散状态, 具有微弱的等离子共振光散射信号. 但当其与肝素通过静电作用后发生明显的聚集, 产生显著的增强PRLS信号, 信号的增强程度与肝素浓度在一定范围内呈线性关系. 据此建立了基于金纳米棒聚集测定微量肝素的等离子共振光散射分析法. 在60 mmol/L NaCl和pH 5.33的Britton-Robinson (BR)缓冲溶液介质中, 金纳米棒浓度为6.4×10-5 mol/L时, 测得肝素的线性范围为0.02~0.70 μg/mL, 检出限为(3σ ) 8.0 ng/mL. 该方法成功应用于临床肝素钠注射液的测定.  相似文献   

2.
研究发现, 在pH 9.37 的BR缓冲体系中, 典型四环素类药物盐酸土霉素、盐酸多西环素、盐酸四环素、盐酸金霉素与氯金酸发生氧化还原反应生成的金纳米颗粒在500~550 nm 波长范围内显示出特征的等离子体共振吸收, 且吸光度值与四环素类药物的浓度在一定范围内呈良好的线性关系, 据此建立了测定四环素类药物的等离子体共振吸收分析新方法. 该方法能分别检测0.5~20, 0.5~16, 0.5~16, 0.5~20 μmol/L 范围的盐酸土霉素、盐酸多西环素、盐酸四环素和盐酸金霉素, 对应的检出限分别为0.20, 0.16, 0.15, 0.18 μmol/L. 对浓度为20.0 μmol/L 的盐酸土霉素进行了15 次平行测定, 其相对标准偏差为1.53%. 该方法成功用于合成样和片剂中土霉素的测定, 且根据溶液颜色变化实现了上述四环素类药物的三原色可视化定量检测.  相似文献   

3.
王健  王冬梅  李原芳 《科学通报》2011,56(15):1196-1203
金纳米颗粒(AuNPs)具有独特的等离子体共振吸收性质. 半胱氨酸与金纳米颗粒之间的 Au–S 共价键作用导致金纳米颗粒等离子体共振吸收红移, 本文据此建立了一种通用性的氧化性小分子的可视化分析方法. 当氧化性小分子如H2O2 或者单线态氧(1O2)存在时, 半胱氨酸的巯基被氧化成–S–S–键, 使半胱氨酸诱导金纳米颗粒聚集的能力降低, 从而金纳米颗粒的等离子体共振吸收峰由740 nm 蓝移到531 nm, 溶液颜色逐渐由蓝变红, 据此实现了氧化性小分子的可视化检测. 研究发现, 740 和531 nm 处的吸收度比值(A740/A531)与H2O2 或者1O2 的浓度呈现良好的线性关系. 将所建立的方法用于老鼠脑浆中H2O2 的检测, 检测结果与流动注射-化学发 光法一致.  相似文献   

4.
在pH8.0的Tris-HCl介质中,三磷酸腺苷(ATP)能诱导十六烷基三甲基溴化铵(CTAB)包被的正电金纳米颗粒(AuNPs)聚集,引起其表面等离子体共振吸收及等离子体共振散射变化.通过扫描电子显微镜、动态光散射及Zeta电位表征了金纳米颗粒的聚集,讨论了ATP与金纳米颗粒的结合模式,确定了三磷酸腺苷与正电金纳米颗粒的配位作用.在此基础上建立了表面等离子体共振吸收定量检测ATP的方法.方法的线性范围为4.0~80μmol/L,检出限为0.82μmol/L.相同浓度的ADP,AMP,UTP,CTP和GTP不干扰测定.方法用于人体尿样ATP的检测,回收率在94.4%~123%之间,相对标准偏差RSD小于2.5%.与传统ATP检测方法相比,该方法简单快速,选择性好.  相似文献   

5.
随着生物医学的发展,对生物成像技术和成像分辨率的要求越来越高,纳米材料和技术被越来越多地应用到生物医学领域.各向异性的金纳米棒由于具有较高的电子密度、较大的吸收截面、特殊的表面等离子共振光学特性、优良的生物相容性和化学稳定性而被广泛应用于生物成像领域.本文结合本课题组在该领域的研究经验,综述了金纳米棒的制备方法、光学性能和表面修饰方法;并从金纳米棒局部等离子共振特性出发,综述了金纳米棒的暗场散射成像、双光子荧光成像、光声断层成像、光学相干断层扫描、X射线计算机断层扫描、表面增强拉曼散射成像等生物成像技术.同时阐述了金纳米棒在生物成像、医学诊断和联合治疗等领域中的应用进展.  相似文献   

6.
用光化学的方法合成得到Ag/TiO2 复合纳米粒子 ,其尺寸约为 40nm .表面沉积的银簇表现出典型的等离子体共振吸收 ,但由于TiO2 的影响使得吸收峰宽化和红移 .Ag/TiO2 复合纳米粒子体系有表面增强Raman散射 (SERS)效应 ,这一方面拓展了SERS的范围 ,另一方面也为金属、半导体相互间作用的研究提供了依据 .  相似文献   

7.
报道了一种新型的荧光及表面增强拉曼散射(SERS)双模式光学成像探针. 该探针以金核银壳纳米棒为SERS增强基底, 其表面标记拉曼分子产生SERS信号. 随后通过层层吸附的方法在标记了拉曼分子的金核银壳纳米棒表面包裹聚合物电解质. 最后在聚合物电解质层上连接异硫氰酸荧光素产生荧光信号. 将探针置入HeLa细胞, 实现了荧光、SERS双模式成像. 该探针具有以下优点: (1) 能产生荧光、SERS两种信号, 实现双模式光学成像; (2) 金核银壳纳米棒具有优异的SERS增强能力, 使得探针进入活细胞后仍能提供高信噪比的SERS信号; (3) 聚合物电解质在形成隔离层避免荧光信号被金属淬灭的同时, 提高了探针的生物兼容性. 这种双模式光学成像探针在药物输运和肿瘤靶向等研究中具有重大的应用前景.  相似文献   

8.
9.
金纳米壳球体的光学特性及其应用研究进展   总被引:3,自引:0,他引:3  
谈勇  钱卫平 《科学通报》2005,50(6):505-511
金纳米壳球体是一种球状分层的纳米复合物颗粒, 由薄的金壳和绝缘体核组成. 在纳米壳球体的核-壳结构中, 其等离激元共振频率随核和壳相对大小的变化而系统地变化. 利用自组装和还原化学, 可以自由地设计和制造纳米壳球体, 使其等离激元共振吸收峰的位置位于光谱的近红外区. 金纳米壳球体这一独特的光学性质, 体现其人工设计的可控性, 在药物缓释、免疫分析、癌症治疗和成像以及生物传感等很多领域有着广阔的应用前景. 本文对金纳米壳球体的制备、性质及其应用研究进展作了综述, 并对金纳米壳球体未来的发展作了展望.  相似文献   

10.
基于多功能纳米磁珠的DNA制备与基因分型   总被引:5,自引:0,他引:5  
为了构建DNA样品制备芯片, 研发了一种以羧基修饰的磁性纳米粒子作为固相载体, 从全血、唾液和细菌培养基中快速提取基因组DNA并扩增靶基因的通用方法. 这种羧基修饰磁性纳米粒子不但可以从样品中富集靶细胞和从细胞裂解液中吸附DNA, 而且吸附在纳米磁珠表面的DNA可以不用洗脱而直接作为目标基因PCR扩增的模板, 从而通过功能集成简化了从靶细胞富集到靶基因扩增的全过程. 利用该方法实现了微量唾液样品中HLA基因的快速制备与扩增, 扩增产物与固定于寡核苷酸基因芯片上的16条探针杂交进行HLA基因分型, 取得了良好的效果. 由于该方法快速简便, 不使用有毒试剂和离心操作, 便于用以构建快速高通量的核酸制备微芯片.  相似文献   

11.
金纳米管结构的等离子体光子学性质   总被引:1,自引:1,他引:0  
张中月  熊祖洪 《科学通报》2010,55(23):2269-2275
应用离散偶极子近似方法计算了金纳米管结构的消光光谱及其近场电场分布, 并与金纳米柱的计算结果进行了比较. 结果发现, 当以等离子体共振峰波长入射时, 管状纳米结构拥有更大面积的强电场分布. 故管状纳米结构更适合作为表面增强拉曼散射的衬底, 用于生物分子或者化学分子的探测. 另外, 我们还研究了纳米管结构参数对其等离子体共振峰的影响, 以调节等离子体共振峰的位置, 从而满足其在表面增强拉曼散射等等离子体光子学方面的应用.  相似文献   

12.
表面修饰聚合物自组装多层的金纳米棒的表面增强荧光   总被引:2,自引:0,他引:2  
在金纳米棒表面自组装由阴离子聚合物和阳离子聚合物通过静电作用形成的聚合物多层结构,并研究了该金纳米棒的表面增强荧光效应.未经聚合物修饰的金纳米棒猝灭荧光素的荧光,最高猝灭率为91.5%.经聚合物自组装多层结构修饰后,金纳米棒增强荧光素的荧光.3层聚合物修饰的金纳米棒的荧光增强因子可达102级.  相似文献   

13.
随着生物医学的发展, 科学研究对生物成像技术和成像分辨率的要求越来越高, 纳米技术和材料被越来越多地应用到生物医学领域中来. 在细胞和生物组织的成像分析中, 纳米金由于其特殊的表面等离子共振特性和优良的生物相容性, 常被用作对比剂、靶向载体、增强剂、示踪剂和传感器而广泛应用于生物成像领域中. 我们将课题组的研究方向与目前该领域的研究热点相结合, 从纳米金辅助细胞及细胞内成像和动物活体成像两个方面就纳米金在生物成像、医学诊断等领域中的应用进展进行了阐述.  相似文献   

14.
p53修饰及其相互作用的研究进展   总被引:1,自引:0,他引:1  
黄洁  刘向宇  朱卫国 《科学通报》2009,54(18):2746-2758
p53是一个重要的抑癌分子, 在抑制肿瘤发生发展过程中起关键作用. 正常生理状况下, p53水平很低, 细胞受到外界刺激后, p53水平升高, 稳定性增强, 继而参与细胞周期阻滞、细胞衰老、DNA修复或细胞凋亡等重要的生命过程. p53功能的精确调控至关重要, 涉及一系列翻译后修饰(泛素化、乙酰化、磷酸化、甲基化、泛素样蛋白质修饰等等), 这些作用互相协作、相互影响, 从而精密调节p53的活性. 本文探讨p53的各种修饰作用, 并分析其各种修饰与肿瘤发生的相互关系, 为肿瘤的治疗提供一些参考价值.  相似文献   

15.
提出了一种提高p-GaN/i-InGaN/n-GaN 双异质结太阳能电池外量子效率的方法,即将p-GaN 刻蚀成纳米阵列结构. 我们使用Ni 退火形成微结构掩模, 通过感应耦合等离子体(ICP)将p-GaN 刻蚀纳米阵列结构. 同时, 提出了两步刻蚀n-GaN 台面的制作工艺, 以此在形成p-GaN 纳米阵列结构时获得光滑的n-GaN 层表面, 以此改善后续金属电极的沉积. 经测试, 含有p-GaN纳米阵列结构的电池峰值外量子效率可达55%, 比常规p-GaN 膜层基InGaN/GaN 太阳能电池的外量子效率提高了10%.  相似文献   

16.
王丹  钱骏  何赛灵 《科学通报》2013,58(7):561-567
利用水热法合成了Gd掺杂的具有上转换发光特性的NaYF4:Gd/Yb/Er纳米棒, 对材料的形貌、晶体类型和光致发光光谱进行了分析. 采用化学方法在上转换发光纳米棒表面修饰了聚乙二醇分子, 使油溶性的NaYF4:Gd/Yb/Er纳米棒转化成了水溶性纳米材料, 实现了离体细胞的上转换发光成像.  相似文献   

17.
金纳米颗粒因其具有独特的物理化学及光学性质, 在生物影像、癌症诊断治疗等领域表现出极大的应用前景, 但因小尺寸纳米金颗粒(<20 nm)在生理体液环境中稳定性较差、体内安全剂量低、被动靶向效果不明显等问题, 使其在体内成像, 尤其在活体肿瘤部位成像中受到较大局限. 本文针对上述问题, 将13 nm金颗粒生长在具有特殊核壳结构的夹心二氧化硅空腔之内, 形成具有新型结构的“摇铃形”金复合纳米二氧化硅(silica nanorattles@gold nanoparticles, SN@GN), 既保留金纳米颗粒的强散射特性以利于细胞和动物组织中实现暗场成像, 同时二氧化硅壳层将金颗粒保护起来, 提高了纳米颗粒的稳定性. 细胞毒性实验表明SN@GN的细胞生物相容性良好, 毒性低. 动物急性毒性实验表明, SN@GN的最大耐受剂量大于200 mg/kg, 而GN的体内最大耐受剂量仅为4.6 mg/kg, 显著提高了金纳米颗粒的生物相容性. 本研究为SN@GN在生物暗场影像领域的应用提供了重要的实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号