首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
郑欣  曲鑫 《科技信息》2008,(6):110-113
为了研究反投影滤波重建方法在CT(computedtomography)系统中的应用,提出了一种基于PI线段的简化扇束射束重建算法.该算法首先对X射线束产生的投影数据进行微分,然后把这些微分后的数据反投影到一系列的PI线段上,最后沿着PI线段的方向对反投影数据进行Hilbert滤波,即得到重建图像.利用Shepp-Logan模型进行计算机数值模拟实验,得到了该算法和传统的滤波反投影算法的对比结果.利用微焦点X射线CT的投影数据进行重建,得到了实际数据下的重建图像.实验结果表明,该简化算法能够对感兴趣区域进行精确重建,可以应用于实际的CT系统.而且这种方法有很多优势,比如能够减少需要的数据 ,快速完成扫描.减少辐射药剂的服用量,减少X-ray的辐射,加快计算机的运算.  相似文献   

2.
针对传统压缩传感一次性随机测量整幅图像所导致的存储量大、重建时间长等问题,提出了一种新的分块压缩传感重建算法.首先,将图像分割成一系列子块,分别将每个子块的所有列向量首尾连接起来构成原始信号;其次,将该信号经过稀疏变换后投影到观测矩阵上得到对应的观测值,再利用优化方法从这些观测中重建出信号;然后,分类每个重构子块的活动...  相似文献   

3.
为了研究基于PI线段的反投影滤波重建方法在CT(computed tomography)系统中的应用,提出了一种基于平行PI线段的简化的平行射束重建算法。该算法首先对平行X射线束产生的投影数据进行微分,然后把这些微分后的数据反投影到一系列的平行PI线段上,最后沿着PI线段的方向对反投影数据进行Hilbert滤波,即得到重建图像。利用Shepp-Logan模型进行计算机数值模拟实验,得到了该算法和传统的滤波反投影算法的对比结果。利用微焦点X射线CT的投影数据进行重建,得到了实际数据下的重建图像。实验结果表明,该简化算法能够进行精确重建,可以应用于实际的CT系统。  相似文献   

4.
提出了一种基于图形处理器实现的锥束CT图像迭代重建算法.该算法将三维纹理作为被重建物体的离散模型,基于射线投射方法实现了锥束CT的正投影计算;通过反向逐层映射到三维纹理实现了反投影计算;采用多纹理融合等技术完成了图像校正和投影校正.与经典的TMA-SART算法比较,作者算法运算速度快,占用显存少,支持全浮点精度运算,且易于在算法中添加先验知识和约束条件.通过对Shepp-Logan模型的图像迭代重建实验,验证了该算法的优势.  相似文献   

5.
为了精确地获得计算机断层成像(CT)图像重建所需的平行束X射线投影,提出了CT投影变换理论,得到了一种精确地由锥束投影计算平行束投影的算法.该算法可以适用于任意形式的扫描轨道.在此基础上,分别提出了针对完整物体和物体感兴趣区域进行CT投影变换的投影数据完备性条件.将CT投影变换方法应用于圆轨道CT图像重建,有效地改善了FDK算法的重建结果,特别是在远离扫描轨道的平面内,改进后的重建图像CT值更加接近真实值.数值模拟实验证明了上述CT投影变换理论和方法的有效性.  相似文献   

6.
经典的CT重建算法基于X射线源为单色源的假设,而实际上由于工业CT机或医用CT机的X射线是多色的,通常只能得到多色投影数据。若直接用多色投影数据来重建图像,就会出现射束硬化伪迹,这种硬化伪迹如果不校正就会影响医学诊断和工业检测的结果。本文通过对计算机断层成像中射束硬化产生的原因分析,给出了基于单成分被测物体的射束硬化校正算法,并对算法进行了数值模拟。  相似文献   

7.
扁平构件的CT重建方法研究   总被引:3,自引:0,他引:3  
提出了一种主射线与旋转轴成45°入射角、面阵探测器与旋转轴垂直的三维CT投影方法.在X射线源能量较低的情况下,该方法能够对大而扁的工业构件实施三维CT重建.文中推导了这种投影方式下三维CT反投影重建算法,并用计算机进行了仿真.最后使用270kV射线机对直径100mm、厚度13mm的钢件进行了CT重建.  相似文献   

8.
在医疗诊断中,稀疏采样能减少CT扫描过程中辐射对患者的伤害.但直接对稀疏采样后的投影数据进行重建,会使CT重建后的图像出现失真、伪影等问题.为保证低采样率下重建图像的质量,提出了双字典自适应学习算法,参照Sparse-Land模型的双字典学习框架,将K-SVD算法与双字典学习算法框架相结合得到补全投影数据,利用FBP算法进行重建得到高质量的重建图像.实验结果表明,在低采样率下使用所提方法进行CT重建的图像质量优于COMP双字典学习算法和MOD双字典学习算法,并且此方法有效提高了CT图像重建在低采样率时的性能.  相似文献   

9.
董宝玉 《科技信息》2007,(17):17-21
X射线CT(XCT)是一门用来获取观测物体断层图像的技术,它广泛地应用于医疗诊断和工业无损检测等领域。但目前常用于CT重建的滤波反投影算法易受噪声和伪影的影响,降低了图像质量,为了抑制图像伪影与噪声,本文应用统计迭代的方法进行XCT重建。我们将最大似然估计(MLE)理论推广到XCT,基于投影数据统计模型,实现了期望最大化(EM)算法在圆轨道XCT中的应用。最后,对计算机模拟数据与X射线扫描实际数据分别进行了实验,实验结果表明该方法有效可行,重建图像清晰准确。  相似文献   

10.
考虑投影数据不足时,射线层析成像的离散重建算法难以取得较好效果的情况,利用模糊理论建立了表示物体衰减系数的连续函数,用神经网络学习算法确定该连续函数中的待定参数.提出了一种适于投影数据或投影方向不够时的CT图像重建算法.计算机仿真结果显示了该方法在投影数据严重缺少时的良好效果。  相似文献   

11.
利用卷积反投影算法对图像进行重建时,要降低成本,提高成像效率,就必须选取合理的抽样间距和投影数,作者在分析抽样间距和投影数对图像重建质量影响时发现,在噪音比较大的情况下,抽样间距过小,会使重建图像的质量下降,而投影数的变化对重建图像质量的影响则相对较小。  相似文献   

12.
CT的正投影计算是对CT数据采集过程的模拟,不仅可用于生成投影数据,而且是CT图像迭代重建算法的一个关键组成部分.在CT的锥束扫描方式下,正投影计算量大,计算时间长.为此,提出了一种GPU加速实现的锥束CT正投影算法.该算法通过并行计算各条X射线在探测器上投影,实现了锥束CT正投影的快速计算.由于该算法支持全浮点运算精度计算,且采用三线性插值方式,因此计算精度高.通过对Shepp-Logan模型的正投影计算实验以及与其他正投影算法的比较,验证了作者算法的优点.  相似文献   

13.
图像重建中X射线投影模拟的常用方法   总被引:1,自引:0,他引:1  
锥束CT是目前医学成像领域研究的热点.在CT图像重建算法研究和比较过程中,第一步工作就是获取投影数据.该文为正在研究CT的工作者或即将步入CT领域的研究者提供几种在图像重建中X射线投影模拟的理论方法,对这几种方法进行了比较详细的理论推导,讨论了它们各自的适用条件,在计算机上模拟实现并比较了它们在获取投影数据方面的优劣.结果表明,在物体形状规则且密度分布均匀的情况下,解析法与矢量法能获取真实投影,而在物体形状不规则和密度分布不均匀的情况下,离散法的效果也可以接受.  相似文献   

14.
为了加快工业CT系统的扫描速度,减小数据量,针对扇形束超短扫描问题,提出了一种带参数的基于Hilbert变换的感兴趣区域重建算法,并且在分析扇形束扫描的数据冗余基础上设计了一种适用于超短扫描的窗函数。利用Shepp-Logan头模型通过计算机模拟实验,给出了该算法和标准卷积反投影算法、F.Noo和H.Kudo算法的对比结果。实验结果表明,该方法能够准确地实现物体感兴趣区重建,并在噪声抑制能力上优于其他3种算法,因此在工业CT中具有重要的工程意义。  相似文献   

15.
提出了基于直接螺旋半扫描数据的有序子集期望最大化(OSEM)迭代重建.该方案省略了螺旋CT中对投影数据的插值步骤,利用螺旋CT中相邻重建层间的相似性,将当前层的重建结果作为下一层重建时OSEM算法的初始输入.实验结果表明,在螺距较小的情况下,该重建方案使得螺旋CT在重建质量优于滤波反投影的前提下,所需的重建时间显著减少.  相似文献   

16.
基于投影的CT图像金属伪影非线性权重校正   总被引:4,自引:0,他引:4  
为抑制计算机层析造影(CT)系统重建图像中出现的金属伪影,提高图像的质量,采用一种基于金属投影非线性权重衰减的方法进行校正。对原始的投影直接重建,在得到的图像中利用阈值分离出金属区域,并重新对该金属区域进行投影,便得到原始的投影中金属投影的区间。只对该金属投影进行合适的非线性衰减。再用传统的滤波反投影方法重建图像。数值模拟表明,该方法不但能基本消除由射线硬化和射线剧烈衰减而引起的金属伪影,而且能保留金属信息,同时能增强金属区域不同部分之间的对比度,使得重建图像的质量得到很大的提高。该算法计算复杂度较小,实现简单,具有较高的实用价值。  相似文献   

17.
CT图像重建的可扩展多DSP并行计算系统结构   总被引:4,自引:0,他引:4  
为提高大型工业CT的图像重建速度,通过分析卷积反投影算法的特点,提出了一种并行计算方案。设计了一种基于SPMD(单指令集,多数据流)并行处理结构的可扩展的多DSP(数字信号处理器)并行计算系统模型。通过仿真实验,确定了系统设计的重要参数——DSP的数量的选择依据。仿真结果表明,利用这种模型,可以将重建的时间从100 s量级降低到1 s量级。这样就大幅度地提高了CT图像重建的速度,扩大了大型工业CT的运用范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号