首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
We have analyzed a lax mutant that exhibits altered panicle architecture in rice.The primary and secondary rachis-branches are normally initiated and each branch ends in a terminal spikelet,but all the lateral spikelets are absent and the terminal spikelet displays variegated structures in the mutant.An F2 population from the cross between the lax mutant and a japonica variety,W11,was constructed and analyzed.Using microsatellite and CAPS markers,the lax locus was mapped on the long arm of chromosome 1,co-segregated with a CAPS marker,LZ1,within an interval of 0.28 cM between a CAPS marker,HB2,and a microsatellite marker,MRG4389.RT-PCR analysis revealed that the expressions of the rice B-function MADS-box genes OsMADS2,OsMADS4,OsMADS16 and OsMADS3 were significantly reduced,whereas the expression of the rice A-function gene RAPIA was not altered.  相似文献   

2.
A rice initiation-type lesion mimic mutant (lmi) was identified, which was isolated from an indica rice Zhongxian 3037 through γ radiation mutagenesis. Trypan blue staining and sterile culture revealed that the mutant spontaneously developed lesions on the leaves in a developmentally regulated and light-dependent manner. Genetic analysis indicated that the lesion mimic trait was controlled by a single resessive locus. Using public molecular markers and an F2 population derived from lmi and 93-11, we mapped the lmi locus to the short arm of chromosome 8, nearby the centromere, between two SSR markers RM547 and RM331. The genetic distance was 1.2 and 3.2 cM, respectively. Then according to the public rice genomic sequence between the two SSR markers, lmi was further finely tagged by three CAPS markers: C4135-8, C4135-9 and C4135-10. And lmi locus was a co-segregated with marker C4135-10, providing a starting point for lmi gene cloning.  相似文献   

3.
A rice psl1 (presenescing leaf) mutant was obtained from a japonica variety Zhonghua 11 via radiation of ^60Co-γ in M2 generation. Every leaf of the mutant began to wither after it reached the biggest length, while the leaves of the wild variety could keep green for 25--35 d. In this study, genetic analysis and gene mapping were carried out for the mutant identified. The SSR marker analysis showed that the mutant was controlled by a single recessive gene (psl1) located on chromosome 2. Fine mapping of the psl1 locus was conducted with 34 new STS markers developed around psl1 anchored region based on the sequence diversity between Nipponbare and 93-11. The psl1 was further mapped between two STS markers, STS2-19 and STS2-26, with genetic distances of 0.43 and 0.11 cM, respectively, while cosegregated with STS2-25. A BAC contig was found to span the psl1 locus, the region being delimited to 48 kb. This result was very useful for cloning of the psl1 gene.  相似文献   

4.
Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal architecture. In this study, we report mapping and characterization of a rice mutant defective in tiller angle. At the seedling stage, the newly developed tillers of the mutant plants grow with a large angle that leads to a “lazy“ phenotype at the mature stage. Genetic analysis indicates that this tillerspreading phenotype is controlled by one recessive gene that is allelic to a reported mutant la. Therefore, the mutant was named la-2 and la renamed la-1. To map and clone LA, we constructed a large mapping population. Genetic linkage analysis showed that the LA gene is located between 2 SSR markers RM202 and RM229. By using the 6 newly-developed molecular markers, the LA gene was placed within a 0.4 cM interval on chromosome 11, allowing us to clone LA and study the mechanism that controls rice tiller angle at the molecular level.  相似文献   

5.
The exploration of new genes controlling rice leaf shape is an important foundation for rice functional genomics and plant archi-tecture improvement. In the present study, we identified a rolling leaf mutant from indica variety Yuefeng B, named rl11(t), which exhibited reduced plant height, rolling and narrow leaves. Leaves in rl11(t) mutant showed abnormal number and morphology of veins compared with those in wild type plants. In addition, rl11(t) mutant was less sensitive to the inhibitory effect of auxin than the wild type. Genetic analysis suggested that the mutant was controlled by a single recessive gene. Gene Rl11(t) was initially mapped between SSR markers RM6089 and RM124 on chromosome 4. Thirty-two new STS markers around the Rl11(t) region were developed for fine mapping. A physical map encompassing the Rl11(t) locus was constructed and the target gene was finally delimited to a 31.6 kb window between STS4-25 and STS4-26 on BAC AL606645. This provides useful information for cloning of Rl11(t) gene.  相似文献   

6.
The sterility of Pingxiang male-sterile rice (Pms), possibly derided from a spontaneous mutation in Pingxiang fertile rice (Pmf), was previously reported to be controlled by a single dominant nuclear gene. It can be restored to fertility either by a dominant epistatic gene or by higher temperature treatment at the early stage of inflorescence development. In order to tag the genic male-sterile gene, Pms, Pmf and Ce 64, a cytoplasmic male-sterile restoring line without the epistatic gene for Pms, were used to construct mapping populations. Two segregation populations, “(Pms/Ce 64) F1s (sterile plant)//Pmf ” F1 and “Pms//(Pmf/Ce 64) F1” F1, were simultaneously developed. Subsequently, the genic male- sterile gene was mapped between a simple sequence length polymorphism marker, RM228, and a restriction fragment length polymorphism marker, G2155, with distances of 14.9 and 2.6 cM, respectively. The tagged dominant genic male-sterile gene is temporarily designated Ms-p.  相似文献   

7.
A narrow leaf mutant was obtained after T-DNA transformation conducted on a rice variety Zhonghua 11. Several abnormal morphological characteristics, including semi-dwarf, delayed flowering time, narrow and inward rolling leaves, and lower seed-setting, were observed. The rate of net photosynthesis (under saturate light) of flag leaves in the mutant was significantly lower than that of the wild type. Moreover, the leaf transpiration rate and stomatal conductance in the mutant flag leaf were lower than those of the wild type at the grain filling stage. It was found that the mutant phenotype was not caused by the T-DNA insertion. Genetic analysis showed that the mutant was controlled by a single recessive gene, designated as nal3(t). A genetic linkage map was constructed using a large F2 mapping population derived from a cross between nal3(t) and an indica variety Longtefu B with 6 polymorphic markers on chromosome 12 identified from 366 SSR markers by the BAS method. Gene nal3(t) was mapped between the markers RM7018 and RM3331. Fine mapping of nal3(t) locus was conducted with 22 newly developed STS markers based on the sequence diversity around the region harboring nal3(t) between Nipponbare and 93–11, and nal3(t) was finally mapped to a 136-kb region between the STS markers NS10 and RH12-8. Supported by National High Technology Research and Development Program of China (863 Program) (Grant No. 2006AA10A102), National Natural Science Foundation of China (Grant No. 30600349) and Natural Science Foundation of Zhejiang Province (Grant No. Y306149)  相似文献   

8.
A rice male-sterile mutant OsMS-L of japonica cultivar 9522 background, was obtained in M4 population treated with ^60Co γ-Ray. Genetic analysis indicated that the male.sterile phenotype was controlled by a single recessive gene. Results of tissue section showed that at microspore stage, OsMS-L tapetum was retarded. Then tapetal calls expanded and microspores degenerated. No matured pollens were observed in OsMS-L anther locus. To map OsMS-L locus, an F2 population was constructed from the cross between the OsMS-L (japonica) and LongTeFu B(indica). Firstly, the OsMS-L locus was roughly mapped between two SSR markers, RM109 and RM7562 on chromosome 2. And then eleven polymorphic markers were developed for further fine fine-mapping. At last the OsMS-L locus was mapped between the two lnDel markers, Lhsl0 and Lhs6 with genetic distance of 0.4 cM, respectively. The region was delimited to 133 kb. All these results were useful for further cloning and functional analysis of OsMS-L.  相似文献   

9.
Fine mapping of a semidwarf gene sd-g in indica rice(Oryza sativa L.)   总被引:4,自引:0,他引:4  
The semidwarf gene sd-g which has been usedin indiea rice breeding in southern China is a new one, non-allelic to sd-1. To map sd-g, an F2 population derived fromthe cross between Xinguiaishuangai and 02428 was con-structed. The sd-g was roughly mapped between two mi-crosatellite markers RM440 and RM163, with genetic dis-tances of 0.5 and 2.5 cM, respectively. Then nine new poly-morphic microsatellite markers were developed in this region.The sd-g was further mapped between two microsatellitemarkers SSR5-1 and SSR5-51, with genetic distances of 0.1and 0.3 cM, respectively, while cosegregated with SSR418. ABAC contig was found to span the sd-g locus, the region be-ing delimited to 85 kb. This result was very useful for cloningof the sd-g gene.  相似文献   

10.
Thousand-grain weight (TGWT) is an important factor affecting grain yield as well as grain quality in rice. A quantitative trait locus (QTL) qTGWTI-1 for TGWT was detected previously near DNA marker RG532 on the short arm of chromosome 1 in a recombinant inbred line (RIL) population derived from the indlca-indica rice cross Zhengshan97B (ZS97B)/Milyang46 (MY46). In this study, two residual heterozygous lines (RHLs), Chl and Ch2, derived from the ZS97B/MY46 RIL F7 population, were used to develop two Fe populations, RIL-1 and RIL-2. The genome of Chl and Ch2 contains a heterozygous region flanked by RM1--RM3746 and RM151--RM243 on the short arm of chromosome 1, respectively, but is homozygous in other regions. Two tightly linked QTLs, Gwl-1 and Gwl-2, with the same additive direction and similar effect on TGWT, were detected in the region of QTL qTGWTI-1 in population RIL-2. No QTL was detected in the population RIL-1. Four individual RHLs from the population RIL-2 carrying heterozygous segments flanked by RM151--RM10404, RM10381--RM243, RM10435--RM259 and RM10398--RM5359, respectively, were chosen to develop four F= populations. Ten maternal homozygotes and 10 paternal homozygotes were selected from each of the four F2 populations derived from the four RHLs. The four sets of near isogenic lines (NILs) were grown for phenotyping of TGWT and delimitation of Gwl-1 and Gw1-2. Results showed that Gwl-1 and Gw1-2 were located in the intervals RM10376--RM 10398 and RM10404--RM 1344 which cover 392.9 and 308.5 kb regions, respectively. The enhancing alleles were from ZS97B at both loci, and no significant interactions were detected. Genetic dissection of Gwl-1 and Gwl-2 has laid a foundation for their cloning and molecular breeding of grain yield and quality in rice.  相似文献   

11.
Flowers, fruits and seeds are products of plant re- productive development and provide the important sources of foods for humans. Therefore, the moleculargenetic mechanisms of floral development have been ahotspot of research of plant developmental biology[1]. Rice is one of the most important staple food crops. Theoutcome of its reproductive development would determine the yield and quality of grains. Rice is also a model plantof cereals. Hence, the study of rice reproductivedevelopment, esp…  相似文献   

12.
Mapping of two new brown planthopper resistance genes from wild rice   总被引:9,自引:0,他引:9  
A brown planthopper (BPH) resistance line, B5, derived its resistance genes from the wild riceOryza officinalis Wall exwatt, was hybridized with Taichung Native 1, a cultivar highly susceptible to BPH. A mapping population composed of randomly selected 167 F2 individuals was used for determining the BPH resistance genes by the restriction fragment length polymorphism analysis (RFLP). Bulked segregant analysis was conducted to identify RFLP makers linked to the BPH resistance genes in B5. The results indicated that the markers linked to BPH resistance are located at two genomic regions on the long arm of chromosome 3 and the short arm of chromosome 4, respectively. The existence of the two loci was further assessed by the quantitative trait locus (QTL) analysis. We located the two loci at a 3.2 cM interval between G1318 and R1925 on chromosome 3 and a 1.2 cM interval between C820 and S11182 on chromosome 4. Comparison with the BPH genes that have been reported indicated that the BPH resistance genes in B5 are novel. These two genes may be useful BPH resistance resource for rice breeding. Furthermore, the mapping of the two genes is useful for cloning the BPH resistance genes.  相似文献   

13.
The rice clustered spikelets (Cl) mutant exhibits a phenotype that most of branch apical have 2-3 spikelets clustered together,SEM (scanning electron microscope )observation suggested that the Cl gene controlled branch apical development,and influenced the terminal spikelets elongation,The spikelet number was reduced in mutant,indicating that Cl may also have an effect on spikelet number,To map Cl locus,two F2 mapping populations derived from the crosses between the Cl and ZhongHua11,and Cl and ZheFu802 were constructed ,respectively,The Cl locus was roughly mapped between two CAPS markers CK0214 and SS0324,A further fine mapping analysis showed that the Cl locus was mapped between makers R0674E and Cl12560,with genetic distances of 0.2 and 2.1 cM,respectively ,Then we found a PAC conting spanning Cl locus,the region was delimited to 196 kb.This results was useful for cloning of the Cl gene,Allelism test demonstrated that Cl was allelic to Cl2 another rice clustered spikelets mutant.  相似文献   

14.
Fenneropaeneus chinensis is an important species in marine fishery resources and aquaculture in China. A genetic linkage map is essential for improving the efficiency of its breeding by marker-assisted selection and identifying commercially important genes. Linkage maps of F. chinensis were constructed with an F2 mapping population (110 progenies) using amplified fragment length polymorphic (AFLP) marker in this study. Fifty-five AFLP primer combinations produced 532 AFLP markers fitting for map strategy in mapping family. The markers with 3:1 segregating ratios were analyzed using F2 intercross model for the common linkage map, while the markers with 1:1 ratio were analyzed using the pseudo-testcross strategy. The maps of male, female and common were constructed. The female map included 103 markers that formed 28 linkage groups, covering a total length of 1090 cM. All markers were linked with the linkage groups. Segregation distortion was observed for 6 of 103 markers in the female map. The average distance between markers was 14.53 cM and ranged from 4.4 to 24.8 cM. The male map included 144 markers that formed 35 linkage groups. Ten markers remained unlinked in male map. Segregation distortion was observed for 7 of 144 markers in the male map. The total distance of male map covered 1617 cM. The average distance between markers was 16.36 cM. The male map was 32.6% longer than the female map, which may reflect sex-specific recombination rates in Chinese shrimp. The common map was composed of 216 markers, including in 44 linkage groups covering a total distance of 1772.1 cM. Two markers remained unlinked. No distorted markers of 216 markers were shown in the common map. The distance between markers was 10.42 cM. An average estimated genome size for the Chinese shrimp was 2420 cM, which was consistent with the relative size of the Penaeid genome. The distribution of AFLP markers was relatively even in chromosomes of Chinese shrimp maps. The linkage analysis presented in this work provided some insight  相似文献   

15.
Sub 16 is a substitution line with G. hirsutum cv. TM-1 genetic background except that the 16th chromosome (Chr. 16) is replaced by the corresponding homozygous chromosome of G. barbadense cv. 3-79, and T586 is a G. hirsutum multiple gene marker line with 8 dominant mutation genes. The R 1 gene for anthocyanin pigmentation was tagged in Chr. 16 in T586. The objective of this research was to screen SSR markers tightly linked with R 1 by using the F2 segregating population containing 1259 plants derived from the cross of Sub 16 and T586 and the backbone genetic linkage map from G. hirsutum×G. barbadense BC1 newly updated by our laboratory. Genetic analysis suggested that the segregation ratio of red plants in the F2 population fit Mendelian 1:2:1 inheritance, confirming that the red plant trait was controlled by an incomplete dominance gene. Preliminary mapping of R 1 was conducted using 237 randomLy selected F2 individuals and JoinMap v3.0 software. Then, a fine map of R1 was constructed using the F2 segregating population containing 1259 plants, and R 1 was located between NAU4956 and NAU6752, with only 0.49 cM to the nearest maker loci (NAU6752). These results provided a foundation for map-based cloning of R 1 and further development of cotton cultivars with red fibers by transgenic technology. Supported by National Natural Science Foundation of China (Grant No. 30730067) and Programme of Introducing Talents of Discipline to Universities (Grant No. B08025)  相似文献   

16.
Much attention has been paid to leaf shape of rice in the process of ideotype breeding[1]. Several authors have reported that the rolling of leaf in some degree helps keep it erect, consequently optimizing canopy light transmission condition, which is good for dry matter accumulation and for high yield[2―6]. Rice as a polymorphic crop has many types of vari- ety with different morphologies. In terms of leaf shape, different cultivars with rolling leaf have been identifiedin rice germplasm. Le…  相似文献   

17.
The pubescence of the leaf blade surface is an important agronomic characteristic for rice morphology and significantly influences rice growth as well as physiological characteristics. This characteristic was analyzed in F1 and F2 plants derived by crossing cultivar 75-1-127 with the indica cultivar Minghui 63, as well as the glabrous cultivar Lemont and indica cultivar 9311. Results indicated that the pubescence of the leaf blade surface was a dominant trait and controlled by a single gene. The GL6 gene was primarily mapped on rice chromosome 6 with recessive F2 population derived from 75-1-127/Minghui 63 by combining bulked segregation analysis and recessive class analysis using the Mapmaker3.0/MapDraw software. The genetic distances between the simple sequence repeat markers RM20491 and RM20547 were 7.2 and 2.2 cM, respectively. The GL6 gene was fine mapped in the interval between InDel-106 and InDel-115 at genetic distances of 0.3 and 0.1 cM, respectively. The large, recessive F2 population was derived from 75-1-127/Minghui 63. A high-resolution genetic and physical map of GL6 was constructed. Derived from the map-based sequences published by the International Rice Genome Sequencing Project, the GL6 gene was localized at an interval of 79 (japonica) and 116.82 kb (9311) bracketed by InDel-106 and InDel-115 within the BAC accession numbers AP008403 and AP005760. Seven annotated genes (japonica) and eight annotated genes (9311) were present. The basis was further set for GL6 cloning and function analysis.  相似文献   

18.
利用水稻花粉育性基因S-b的SSR分子标记RMl3,鉴定籼粳稻杂种Fl的花粉愈伤组织的基因型,以确定每块愈伤组织在S-b座位的遗传来源,结果表明该座位的等位基因S^i或S^j在愈伤组织群体中分离比不符合1:1的规律,出现偏态分离现象.选择不同培养基及增加预冷处理不会改变偏态分离的方向,但预冷处理会增大偏分离的趋势.为进一步解释DH群体构建中的某些基因的偏态分离现象提供了依据,同时讨论了将SSR标记引入组织培养体系的可行性.  相似文献   

19.
一个水稻白化致死突变体abl25鉴定及其基因定位   总被引:1,自引:0,他引:1  
经Co60辐照的粳稻嘉花1号得到一个新的致死白化突变体albino lethal 25(abl25),该突变体从发芽至4叶期表现为白化苗,之后逐渐死亡.与野生型嘉花1号相比,abl25突变体的叶绿素含量和类胡萝卜素的含量大大降低,叶绿体结构不正常,说明其叶绿体发育受到严重阻碍,导致植物死亡.遗传分析表明:该突变体受一对隐性核基因(abl25)控制,进一步利用abl25与广占63S杂交的F2分离群体,将该突变体基因(abl25)定位于第2染色体上SSR标记RM424与Indel分子标记ID7330之间,随后利用新开发的分子标记和扩大群体将其定位在Indel分子标记ID9111和ID9261之间的150 kb内,发现abl25是一个新的水稻苗期白化致死基因.  相似文献   

20.
An F2 population developed from theXa-4 near isogenic lines, IR24 and IRBB4, was used for fine mapping of the rice bacterial blight resistance gene,Xa-4. Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al. and the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct the genetic linkage map around the geneXa-4 by scoring susceptible individuals in the population.Xa-4 was mapped between the RFLP marker G181 and the polymerase chain reaction (PCR) marker M55. The R gene homologous fragment marker RS13 was found co-segregating withXa-4 by analyzing all the plants in the population. This result opened an approach to map-based cloning of this gene, and marker RS13 can be applied to molecular marker-assisted selection ofXa-4 in rice breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号