首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为了更好地描述35CrMo钢应力-应变关系,建立材料的本构模型,采用Gleeble3800热模拟试验机对热轧后的35CrMo钢进行了热模拟高温压缩实验,研究了35CrMo钢在变形温度为800,900,1 000,1 100,1 200℃,应变速率分别为0.01,0.1,1,10s-1的条件下,变形温度和应变速率对材料流变应力的影响。实验结果表明:35CrMo钢高温变形时存在动态回复型与动态再结晶型两种应力-应变关系,通过求解材料临界应变与峰值应变的关系,间接建立了35CrMo钢峰值应力本构方程,并验证了其准确性。所提出的本构方程可以较好地描述35CrMo钢热变形条件下的应力-应变关系,对于35CrMo钢的热成形工艺设计及数值模拟工作具有基础理论意义。  相似文献   

2.
通过高温压缩试验研究齿轮钢SAE8620H在950~1100℃、应变速率0.01~10 s-1条件下的高温变形行为.该合金钢的流动应力符合稳态流变特征,流变应力随变形温度升高以及应变速率降低而减小,其本构方程可以采用双曲正弦方程来描述.基于峰值应力、应变速率和温度相关数据推导出SAE8620H高温变形激活能Q=280359.9 J·mol-1.根据变形量40%和60%下应力构建该齿轮钢的热加工图,通过热加工图中耗散值及流变失稳区确定其热变形工艺参数范围. SAE8620H钢在在变形程度较小时宜选取低的应变速率进行成形,而在变形程度大时则要选取低温低应变速率或者高温高应变速率.  相似文献   

3.
通过Gleeble 3500高温热模拟压缩实验,研究300M高强钢在变形温度900~1 150℃、应变速率0.01~10 s-1条件下变形温度和应变速率对材料流动应力的影响规律,建立高温热变形材料本构方程。研究结果表明:变形温度和应变速率对300M钢材料流变应力都有显著的影响,随着变形温度的降低和应变速率的增加,材料流动应力增加;建立了材料常数α,n,ln A和激活能Q与真应变之间的非线性四项式函数关系;所建立材料本构方程预测值与实验值具有较好的一致性,说明该本构方程能够准确地描述300M钢热变形条件下的材料流变行为。  相似文献   

4.
在Gleeble3500热模拟实验机上,采用等温热拉伸实验对BR1500HS超高强度钢在变形温度为1 023,1 073,1 123和1 173 K,应变速率为0.01,0.10和1.00 s-1条件下的热流变行为进行研究。根据蠕变理论及实验流动应力曲线确定材料变形激活能、硬化指数等相关材料常数并引入Zener-Hollomon参数。通过位错密度演化模型描述加工硬化和动态回复对流动应力的影响,并建立包含稳态应力σss、屈服应力σ0和动态回复速率系数r这3个参数的本构模型。研究结果表明:由建立的本构模型所绘制的流动应力曲线与实验曲线具有高度一致性,所建立的本构模型能够应用于BR1500HS超高强度钢热拉伸过程的数值模拟及热成形工艺分析。通过回归分析法建立模型参数关于Z参数的表达式,获得流变应力与变形条件的关系。  相似文献   

5.
42CrMo钢的热压缩流变应力行为   总被引:8,自引:2,他引:6  
为实现42CrMo钢锻造的数值模拟与合理制定其热成形工艺参数,采用Gleeble-1500热模拟实验机研究工业用42CrMo钢在变形温度为850~1150℃和应变速率为0.01~50s^-1条件下的流变应力行为。通过线性回归分析确定42CrMo钢的应变硬化指数以及形变表观激活能,获得42CrMo钢高温条件下的流变应力本构方程,并验证该流变应力本构方程的准确性。研究结果表明:42CrMo钢在热压缩变形过程中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的升高而降低;流变应力的预测值与实验值较吻合,而且预测的最大相对误差仅为4.54%。  相似文献   

6.
对高锰TWIP钢进行不同温度(850~1 100℃)和应变速率(0.01,0.1,1,5,10 s~(-1))的绝热压缩试验,研究试验钢高温热变形行为.分析了变形温度和应变速率对流动特性的影响,建立了应变补偿型本构方程,并采用三种标准统计参数对应变补偿型本构方程的精确度进行了评估.结果表明:流动应力对变形温度和应变速率的敏感程度很高,且随着变形温度的提高或应变速率的降低,流动应力呈下降趋势;应变速率对动态再结晶过程有着很复杂的影响;流动应力预测值与试验值具有较高的吻合度,表明建立的应变补偿型本构方程能够精确预测流动应力.  相似文献   

7.
在Gleeble-3800热模拟试验机上进行大变形等温压缩试验,研究Cr-Co-Mo-Ni齿轮钢的高温热变形行为和显微组织,分析材料流变应力与变形温度和应变速率的关系,建立热变形过程的本构方程和热加工图.该材料的流变应力随着温度的升高而下降,随应变速率的增加而增加;用双曲正弦函数式可描述其在热变形过程中的流变应力,热变形活化能为487.21kJ·mol-1;热加工图显示的适宜加工区间为温度1000~1100℃,应变速率0.1 ~1s-1.在热模拟试验基础上进行该钢种锻造工艺的有限元模拟,并结合热加工图分析初锻温度和加工道次对于锻件温度和应变速率的影响,得出适宜的模锻工艺参数为初锻温度1000~1100℃,锻造道次15次.  相似文献   

8.
利用 Gleeble-1500热模拟实验机研究37Mn5钢在变形温度为800~1 150 ℃、变形速率为0.1~10 s-1条件下的热压缩变形行为.采用应变硬化率-应力曲线图较精确地获得峰值应力,并用双曲正弦方程描述37Mn5钢热压缩变形过程中的峰值应力与Zener-Hollomon参数的关系.回归分析得到方程中变形激活能及各材料常数的值,获得37Mn5钢在高温条件下的流变应力本构方程.结果表明,采用该本构方程计算出的流变应力值与实验所得应力值非常接近.  相似文献   

9.
利用Gleeble-3500热力模拟试验机,在温度850~1 200℃、应变速率为0.1~10 s-1,真应变约为0.9的条件下,研究了井口头锻件用AISI 4140钢的热压缩变形行为.采用双曲正弦模型建立了该材料的高温变形本构方程并绘制了热加工图.结果表明:在热压缩过程中,变形温度升高,峰值应力随之减小;而应变速率增...  相似文献   

10.
对高锰TWIP钢进行不同温度(850~1100℃)和应变速率(0.01,0.1,1,5,10s-1)的绝热压缩试验,研究试验钢高温热变形行为. 分析了变形温度和应变速率对流动特性的影响,建立了应变补偿型本构方程,并采用三种标准统计参数对应变补偿型本构方程的精确度进行了评估. 结果表明:流动应力对变形温度和应变速率的敏感程度很高,且随着变形温度的提高或应变速率的降低,流动应力呈下降趋势;应变速率对动态再结晶过程有着很复杂的影响;流动应力预测值与试验值具有较高的吻合度,表明建立的应变补偿型本构方程能够精确预测流动应力.  相似文献   

11.
部分钢铁材料在两相区高温变形时,流变应力往往不随变形温度升高而降低,而是在两相区内出现流变应力的谷值。为了弄清主要化学成分对两相区内流变应力行为的影响,通过热模拟压缩试验研究不同成分钢铁材料在两相区附近的变形行为,分析变形后的金相组织以及两相区附近流变应力的变化,获得铁素体相变开始温度Ar3和两相区内流变应力的降幅。通过回归拟合得到C、Si和Mn等主要合金元素对铁素体相变开始温度Ar3以及流变应力降幅的影响关系。  相似文献   

12.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.  相似文献   

13.
采用Gleeble-1500D热模拟试验机,对铸态2.25Cr1Mo0.25V钢在不同温度(950℃,1050℃,1150℃,1250℃)不同应变速率(0.005S-1,0.01S-1,0.1S-1)的条件下做热压缩试验,得到不同条件下的应力应变曲线,并分析热力学参数对曲线的影响。结果表明,随着形变温度的升高和应变速率的减小,流变应力减小,峰值应力和应变降低;确定了热变形激活能和建立了本构方程。  相似文献   

14.
系统研究了1215钢的热变形行为,分析了应变、应变速度和温度对钢的流变应力的影响规律.通过热模拟实验,研究分析了不同的应变速率和应变温度条件下1215钢的应力-应变曲线.以实验数据为基础,以Johnson-Cook本构模型为依据,讨论了拟合分析Johnson-Cook方程参数的方法.通过实验数据的拟合分析,得到了表达1215钢流变应力随应变、应变速度和形变温度的数学方程,为研究1215钢的动态应力-应变行为提供了基础.研究工作表明,理论计算与实验数据得到了较好的吻合.  相似文献   

15.
通过高温单道次压缩实验,研究800H合金在变形温度850~1 050℃和应变速率0.01~10 s-1条件下的热变形行为和微观组织变化.根据单道次压缩实验数据,绘制了不同变形条件下的800H合金真应力-真应变曲线,通过非线性回归建立了流变应力数学模型;通过线性回归建立了不同温度区间内热变形本构方程.分析了热变形条件对合金微观组织的影响,结果表明:动态再结晶更有可能发生在低应变速率和高变形温度的变形条件下;当变形温度低于950℃时,沿晶界析出的Cr23C6粒子对动态再结晶的发生有一定的抑制作用.  相似文献   

16.
利用热加工模拟试验机进行高温单道次、多道次压缩试验,测定了管线钢X65在不同条件下的变形抗力。在此基础上,建立了X65钢的高温变形抗力模型和残余应变率模型,并对残余应变现象及其影响因素和算法进行了探讨。  相似文献   

17.
通过不同热加工参数下的热压缩试验,研究了新型阀门钢5Cr9Si3的高温变形行为.5Cr9Si3钢在850~900℃和1000~1100℃温度区间内峰值应力分别随温度的升高而减小,而在900~1000℃温度区间内出现峰值应力随温度升高而增大的异常现象.进一步的微观组织及相结构演化分析表明:5Cr9Si3钢在900~1000℃温度区间内发生了由铁素体向奥氏体的转变,产生奥氏体相变强化;同时,随着变形温度的提高,碳化物的回溶造成碳元素和铬元素对5Cr9Si3基体固溶强化效果增强.相变强化和固溶强化是导致5Cr9Si3在900~1000℃温度区间内流变应力异常变化的主要原因.  相似文献   

18.
The high temperature properties of AISI 304 stainless steel were studied. Basic data about the employed experimental equipment, testing procedures, and specimen geometry were given. The experimental setup was used to obtain stress-strain diagrams from tensile tests at room temperature as well as several elevated temperatures. Furthermore, the specimens were subjected to short-time creep tests at various temperatures. Stress levels for creep testing were established as a percentage of yield stress. The results indicate that at lowered temperatures and lower stress levels, AISI 304 stainless steel can be used as a sufficiently creep resistant material.  相似文献   

19.
400MPa级超级钢热连轧过程中温度及MFS的预测   总被引:3,自引:1,他引:3  
采用有限单元法对热连轧生产过程中沿带钢厚度方向的温度场分布进行了预测,计算中考虑了带钢在机架间从表面的辐射和对流传热,在轧制过程中与轧辊表面的热传导和变形热·在温度场模型基础上,同时考虑动态、亚动态及静态再结晶的影响,尤其是低温区形变诱导相变软化作用,建立了计算精轧过程应力应变曲线的流变应力模型,并对400MPa级超级钢细晶化工业轧制中各道次的平均流变应力进行了预测,该模型的计算结果与Sims结果吻合较好,反映了工业生产实际  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号