首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 122 毫秒
1.
粉体材料能够有效地抑制矿井瓦斯爆炸,其粒径越小,抑爆作用越明显,但对于不同浓度的甲烷和空气混合气体而言,粉体材料抑制爆炸的效果不同.文中采用20 L球形不锈钢爆炸罐试验系统,考察粒径1.3μm超细Al(OH)3粉体对不同浓度的甲烷和空气混合气体的抑爆效果.实验结果表明,超细Al(OH)3粉体对抑制甲烷爆炸有效果,对于不同甲烷浓度的甲烷-空气混合气体,可使其最大爆炸压力平均降低11.08%,最大压力上升速率平均降低66.15%,到达最大爆炸压力的时间平均降低57.53%.研究结果对于超细粉体应用于矿井瓦斯爆炸的控制具有一定的指导意义.  相似文献   

2.
针对炭催化CH4-CO2重整反应体系(炭催化剂+O2+CH4+CO2)易燃易爆的特性,在预热的非等容管道中对流态化粉状炭催化剂爆炸特性进行了实验研究,考察了流态化炭催化剂浓度、挥发分、预热温度、流态化炭催化剂粒径、初始压力等对流态化炭催化剂的最大爆炸压力和最大爆炸压力上升速率的影响.研究表明,最大爆炸压力和最大爆炸压力上升速率随流态化炭催化剂浓度变化,呈抛物线形式分布;炭材料挥发分越高,最大爆炸压力和最大爆炸压力上升速率越大,其对应的最佳爆炸浓度也越低;爆炸装置的初始温度越低,流态化炭催化剂最大爆炸压力和最大爆炸压力上升速率越大,且温度越低流态化炭催化剂最佳爆炸浓度越大;流态化炭催化剂粒径越小,最大爆炸压力和最大爆炸压力上升速率越大;随着初始压力的升高,最大爆炸压力以及最大爆炸压力上升速率逐渐升高,且呈线性分布.  相似文献   

3.
采用20 L球形爆炸装置,对6种不同粒径分布的微米铝粉在不同浓度下的爆炸特性进行了实验研究,考察了浓度和粒径对铝粉爆炸特性的影响规律,并分析了其爆炸产物的表面特征.结果表明,铝粉的最大爆炸压力、压力上升速率和爆炸指数随铝粉浓度的增加呈抛物线变化,在最适爆炸浓度(copt=500g/m3)时三者均达到峰值.随着铝粉粒径的减小时,最大爆炸压力、压力上升速率呈指数增加趋势,且在铝粉粒径小于10μm时,其增幅更为显著.爆炸过程中的铝粉粉尘云的燃烧时间随铝粉浓度的增大呈指数规律衰减并趋于平缓,同时随着铝粉粒径的减小而降低.   相似文献   

4.
选用天然矿物粉体蒙脱石作为抑爆材料,通过20 L球形爆炸装置和自主设计的5 L管道实验系统,测试了蒙脱石粉体及其浓度对甲烷-空气预混气体的爆炸压力、火焰传播速度等特性参数的影响.结果表明:蒙脱石粉体对甲烷爆炸具有一定的抑制作用,甲烷-空气预混气体的最大爆炸压力和爆炸火焰传播的平均速度随着粉体浓度的增加呈现先降低后上升的趋势.其中,当粉体浓度为0.16 g/L时,爆炸压力下降至最低,比未添加粉体时下降了29.2%;当粉体浓度为0.20 g/L时,火焰传播平均速度最小.此外,结合蒙脱石粉体的元素组成及热解特性分析其瓦斯抑爆机理.   相似文献   

5.
针对炭催化CH4-CO2重整反应体系(炭催化剂+O2+CH4+CO2)易燃易爆的特性,在预热的非等容管道中对流态化粉状炭催化剂爆炸特性进行了实验研究,考察了流态化炭催化剂浓度、挥发分、预热温度、流态化炭催化剂粒径、初始压力等对流态化炭催化剂的最大爆炸压力和最大爆炸压力上升速率的影响.研究表明,最大爆炸压力和最大爆炸压力上升速率随流态化炭催化剂浓度变化,呈抛物线形式分布;炭材料挥发分越高,最大爆炸压力和最大爆炸压力上升速率越大,其对应的最佳爆炸浓度也越低;爆炸装置的初始温度越低,流态化炭催化剂最大爆炸压力和最大爆炸压力上升速率越大,且温度越低流态化炭催化剂最佳爆炸浓度越大;流态化炭催化剂粒径越小,最大爆炸压力和最大爆炸压力上升速率越大;随着初始压力的升高,最大爆炸压力以及最大爆炸压力上升速率逐渐升高,且呈线性分布.  相似文献   

6.
纳米粉体对矿井瓦斯的抑爆作用   总被引:2,自引:0,他引:2  
通过对传统抑爆剂抑制瓦斯爆炸的作用分析,自主改进形成了瓦斯抑爆实验系统,采用最大爆炸压力、压力上升平均速率等指标表征纳米粉体的抑爆性能.实验结果表明,同微米级粉体相比,纳米粉体的抑爆效果更好,甲烷最大爆炸压力、压力上升平均速率分别下降了70.5%和90%以上,爆炸压力峰值时间延长了3倍多.并在纳米粉体表面效应等基本理论的基础上,结合粉体热重分析,从物翟、化学抑制自由基作用及纳米粉体特殊的阻燃抑爆作用分析探讨了纳米粉体对矿井瓦斯的抑爆机理,提出了纳米抑爆粉体的性能表征参数.图5,表2,参12.  相似文献   

7.
选取石药集团中润制药有限公司生产的7-氨基头孢烷酸(7-ACA)粉体为研究对象,利用20L球形爆炸测试系统进行粉尘爆炸特性实验研究。首先测定7-ACA粉体样本的粒度分布及湿度;用20L球形爆炸装置实验测得7-ACA粉尘在2kJ的点火能量下的爆炸下限质量浓度为18.5g/m3,且粉尘爆炸下限随点火能量的增大呈现降低趋势;粉尘的最大爆炸压力及最大压力上升速率随着粉尘浓度的增加呈先增大再下降的规律,在775g/m3附近达到最大值,并随点火能量的增大而增大。研究结果为中润公司及类似企业7-ACA生产车间的安全管理及防爆工程设计提供了一定的科学依据。  相似文献   

8.
将吸附剂和隔爆材料分别填充于爆炸容器中进行瓦斯防爆实验研究.结果表明:常压条件下,CH4在O2中的爆炸极限为8.5% ~62.5%,爆炸压力最大时的CH4体积分数为36%,略高于理论值(33.3%).单球容器中填充吸附剂具有很好的抑爆性能,即使遇到点火源也能抑制爆炸的发生 ;连通容器中,吸附剂能很好地阻止爆炸的传播 ;随着压力的增大,吸附剂抑爆效果变差,但当压力超过一定值时,随着压力的增大,其抑爆效果变好.隔爆材料由于其具有良好的导热性,无论是在空气、O2环境中,还是在加压条件下都能很好地阻止爆炸的传播 ;压力上升速率越高,其隔爆效果越好.  相似文献   

9.
为了了解HMX粉尘与FOX-7粉尘的燃爆特性,评价其潜在危险性,利用1.2 L哈特曼管式粉尘云爆炸装置,分别对粉尘浓度、粒度、环境湿度对两种物质最小点火能(E_(min))的影响进行了研究与分析。研究结果表明:2类HMX、5类HMX与FOX-7三种粉尘着火的最敏感浓度分别为916.66 g·m~(-3)、833.33 g·m-3与833.33 g·m-3;所对应的Emin分别为12.45 m J、15.75 m J、19.01 m J。粉尘浓度、环境湿度对两种物质的最小点火能均有显著影响;最小点火能随粒度的减小而降低。  相似文献   

10.
瓦斯浓度对爆炸压力及压力上升速率影响   总被引:3,自引:0,他引:3  
不同的瓦斯浓度爆炸时产生的爆炸压力及压力上升速率是不同的。运用自行研制的实验系统,对不同瓦斯浓度对瓦斯爆炸压力及压力上升速率的影响进行了实验研究,得到了定容瓦斯爆炸最大爆炸压力、最大压力上升速率等特征参数;得出瓦斯浓度与瓦斯定容爆炸最大爆炸压力及最大压力上升速率呈二次函数关系,另外,国家目前在气体爆炸特性方面尚无统一的标准出台,文中所采用的实验设备以及实验方法为瓦斯爆炸特性实验标准的制订提供了依据。  相似文献   

11.
为研究煤尘云的着火敏感性,选取3种典型煤尘-无烟煤、烟煤、褐煤,采用Godbert-Greenwald恒温炉装置,研究不同测试条件及煤尘种类对煤尘云最低着火温度的影响,以及惰性粉尘对煤尘云着火的抑制作用.研究表明:随着喷尘压力的增大,煤尘云最低着火温度先降低后升高,存在最佳喷尘压力为50 kPa,对应的煤尘云着火温度最低;随着煤尘粒径的增大,煤尘云最低着火温度呈线性升高的趋势;随着煤尘云浓度的增大,煤尘云最低着火温度先降低后升高;3种煤尘云均存在最佳着火浓度:无烟煤和烟煤为1.818 g/L,褐煤为1.364 g/L;煤尘云的最低着火温度随挥发分含量的增大而减小;挥发分质量分数小于15%的煤尘,灰分的阻燃作用明显,挥发分质量分数大于15%时,灰分的阻燃作用不明显;惰性粉尘对煤尘云着火的抑制效果:炭黑最强、粉煤灰次之,CaCO3最弱.   相似文献   

12.
为掌握中国油页岩粉尘爆炸特性,利用标准测试装置对国内4个主要矿区的油页岩样品进行了粉尘着火敏感度及爆炸猛度实验研究,并和煤粉尘的爆炸特性进行了对比分析.结果表明,粉尘层最低着火温度为240~280℃,粉尘云最低着火温度为440~560℃,与烟煤热引燃敏感性近似;油页岩粉尘云最小点火能为0.2~16 J,分布范围较宽,其大小与样品挥发分含量负相关;粉尘爆炸下限为200~225 g/m3,高于烟煤;爆炸猛度在300~2 500 g/m3质量浓度范围内表现先增后减的趋势,最大值为烟煤的2/3.研究结果对了解中国油页岩粉尘爆炸危险性、选择工艺防爆方法具有参考价值.  相似文献   

13.
为探究粉尘隔爆翻板阀功能的影响因素及其作用机理,基于1m3爆炸测试系统,以玉米淀粉为介质,进行DN600隔爆翻板阀的功能实验研究,并利用Fluent软件建立二维同尺寸燃烧仿真模型,采用动网格技术6DOF求解翻板动态关闭过程,对隔爆阀安装在不同距离时的粉尘爆炸过程进行数值模拟.结果表明,模拟得到的压力发展、火焰传播及翻板关闭过程与实验一致;翻板关闭速度主要受粉尘爆炸压力上升速率影响,爆炸压力上升速率越大,关闭速度越快,并在翻板后方产生负压形成回流;且得到实验条件下隔爆翻板阀最小安装距离是其管径的6~7倍.  相似文献   

14.
根据在德国DMT研究院进行的煤尘连续爆炸时岩粉隔爆效果的实验数据,分析与探讨了在煤尘的一次爆炸和重复爆炸时,岩粉局部惰化效果等问题。  相似文献   

15.
为有效抑制煤矿瓦斯爆炸产生的冲击波,自行设计、搭建了瓦斯爆炸圆形大尺度管道实验系统,对8%浓度的瓦斯预混爆炸过程中多孔泡沫陶瓷对冲击波的抑制特性进行了研究.研究结果表明:泡沫陶瓷的多孔结构通过弹性形变和塑性形变吸收瓦斯预混爆燃的冲击波能量,实现抑制、衰减冲击波的效果.泡沫陶瓷层数、厚度和位置对抑制瓦斯爆炸传播均有一定的影响,其中层数影响尤为显著,双层布置时爆炸冲击最大超压下降速度更快、梯度更大;设置位置距点火端的距离3 m至4 m的范围内可以成功抑制爆炸的发展和演化;泡沫陶瓷厚度对爆炸冲击波趋势影响并不明显,而对最大超压数值有影响,相比50 mm厚,30 mm厚的泡沫陶瓷最大超压衰减率更大,抑爆效果更好.  相似文献   

16.
最小点火能(minimum ignition energy, MIE)是表征可燃粉尘爆炸危险性的核心参数,其测试准确性对粉尘爆炸控制至关重要。然而最小点火能测试方法多样,测试结果有诸多影响因素,不利于粉尘爆炸控制工作开展。为此,梳理了最小点火能测试过程中粉尘分散、静电火花发生、火花能量计算及最小点火能判定等阶段不同方法的原理和特点,分析了粉尘理化性质、粉尘分散状态、火花发生参数以及测试环境等因素对最小点火能测试结果的影响,归纳了近五年来该领域的研究热点,并对未来研究方向提出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号