首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 565 毫秒
1.
Jiang  XiuYang  He  YaoQi  Shen  ChuanChou  Kong  XingGong  Li  ZhiZhong  Chang  YuWei 《科学通报(英文版)》2012,57(7):795-801
An absolute-dated, bi-decadal-resolution, stalagmite oxygen-isotopic time series from Shigao Cave reveals the evolution of summer monsoon precipitation over the past 9.9 ka BP in northern Guizhou Province, Southwest China. The  18O-inferred climate conditions are divisible into three distinct stages: (1) a maximum humid era from 9.9-6.6 ka BP; (2) a gradual declining precipitation interval between 6.6-1.6 ka BP; and (3) a relatively low precipitation time window after 1.6 ka BP. Consistency of contemporaneous stalagmite Holocene 18O records between Shigao and other caves in the Indian and East Asian monsoon realms support the effect of primary orbital solar forcings on monsoonal precipitation. However, statistical analysis shows a significant spatial asynchroneity of the Holocene Optimum termination in the Asian monsoon territory. The Holocene Optimum ended at 7.2-7.4 ka BP in Oman, located in the Indian monsoon region, and at 5.6-5.8 ka BP in Central China, in the East Asian monsoon zone. In Southwest China, the termination occurred between these periods, at 6.6-7.0 ka BP, and was influenced by both monsoon systems. We propose that this spatially asynchronous ending of Holocene Optimum in Asia may be attributed to sea surface temperature changes in the western tropical Pacific, which is a primary moisture source for the East Asian monsoon.  相似文献   

2.
The middle-Holocene was a period of profound cul- ture transitions: the Neolithic culture around Central China[1], Mesopotamia[2] and India[3] all mysteriously collapsed around 4 ka . It is plausible that this civiliza-tion collapse can be contributed to …  相似文献   

3.
A stalagmite from Qixing Cave, Guizhou Province was dated with the TIMS U-series method and its oxygen isotope composition was analyzed. On the basis of the ages and the variations of the δ18O of the stalagmite, the climate change of the last 7.7 ka has been reconstructed in this area: 7.7–5.8 ka, summer monsoon maximum period; 5.8–3.8 ka summer monsoon weakening period; 3.8–0.15 ka, weakened summer monsoon and high amplitude climate fluctuations period. We put forward that the increasing trend of δ18O of the stalagmite reflected not only the weakening of the summer monsoon, which was caused by the decreasing of solar radiation in the Northern Hemisphere, but also the possibly decreasing contribution of the southwest monsoon to the rainfall of this area. These results are consistent with the output of the numerical climate-model modeling. The high amplitude fluctuation of the δ18O may imply the quick shift of the contributions of different moisture sources to the precipitation in this area.  相似文献   

4.
One stalagmite oxygen isotope record from Sanbao Cave, China, established with 7 230Th ages and 355 oxygen isotope data, pro- vides a continuous history of the East Asian Monsoon (EAM) intensity for the period from 284 to 240 thousand years before present (ka BP) with typical errors of 3―4 ka. This new record extends the previously published stalagmite δ18O record back to the marine oxygen isotope stage (MIS) 8. The MIS8 EAM record broadly follows orbitally-induced insolation variations and is punctuated by...  相似文献   

5.
The δ 18O records of ostracode shells in sediments of core QH-2000 from Qinghai Lake can be used as a better proxy to reflect monsoon changes. Low monsoon precipitation between 17.5 and 11 cal. ka BP is indicated by positive δ 18O values averaging 2.37‰. A fast shift in δ 18O from positive at 11 cal. ka BP to negative at 10 cal. ka BP indicates sharp increase of monsoon precipitation. An interval of generally high monsoon precipitation is observed between 10 and 6 cal. ka BP with δ 18O values averaging -2.15‰. Decrease of monsoon precipitation between 6 and 2.5 cal. ka BP is indicated by positive δ 18O values. δ 18O keeps positive values averaging 3.0‰ between 2.5 and 0 cal. ka BP suggesting low high monsoon precipitation. The climatic changes indicated by δ 18O records of ostracode shells in sedi- ments of core QH-2000 from Qinghai Lake and our broader regional comparison show that the climate in Qinghai Lake since the late Glacial is probably controlled by southwest monsoon other than southeast monsoon.  相似文献   

6.
Meiyu in the middle and lower reaches of the Yangtze River since 1736   总被引:7,自引:0,他引:7  
"Yu Xue Fen Cun" records during the Qing Dynasty are used to identify the starting and ending dates of Meiyu at the period of 1736-1911. These results, along with the instrumental meteorological records, are used to reconstruct the series of length and precipitation of Meiyu during 1736-2000 over the middle and lower reaches of the Yangtze River. The characteristics of Meiyu are analyzed since 1736. Moreover, the strength of East Asian Summer Monsoon and locations of rainband are discussed, based on the relationship between the length of Meiyu and the Index of East Asian Summer Monsoon. It is found that the starting and ending dates and the length of Meiyu have significant interannual and interdecadal variations. Apart from 7-8 years, 20-30 years and 40 years cycles for the lengths of Meiyu, the centennial oscillation is also presented. The length of Meiyu, monsoon rainband movement over eastern China, and the strength of East Asian Summer Monsoon (EASM) have a very good correlation, which can be expressed in the following: during the periods of 1736-1770, 1821-1870 and 1921-1970, the EASM was stronger, and the monsoon rainband was located in North China and South China easily, corresponding to the decreased length of Meiyu. Whereas during the periods of 1771-1820, 1871-1920 and 1971-2000, the EASM was weaker and monsoon rainband usually stopped at the middle and lower reaches of the Yangtze River, corresponding to the increased length of Meiyu.  相似文献   

7.
^230Th ages and oxygen isotope data of a stalagmite from Shanbao Cave in Hubei Province characterize the East Asian Monsoon precipitation from 133 to 127ka. The decadal-scale high-resolution δ^18O record reveals a detailed transitional process from the Penultimate Glaciation to the Last Interglaciation. As established with ^230Th dates, the age of the Termination Ⅱ is determined to be 129.5±1.0 kaBP, which supports the Northern Hemisphere insolation as the triggers for the ice-age cycles. In our δ^18O record, the glacial/interglacial fluctuation reaches about 4‰, almost the same level as in other Asian Monsoon cave stalagmite δ^18O records. The transition of the glacial/interglacial period in our record can be recognized as four stepwise stages, among which, a rapid rise of monsoon precipitation follows the stage of “Termination Ⅱ pause”. The rapid rise is synchronous with the abrupt change of global methane concentration, which reflects that an increase in both Asian Monsoon precipitation and tropical wetland plays an important role in the global climate changes.  相似文献   

8.
A systematic environmental rock magnetic study of a century-millennial scale loesspaleosol sequence of the last interglacial in the Jiuzhoutai well section, Lanzhou, on the western Loess Plateau demonstrates that Asian summer nonsoon experienced fast and large oscillations manifesting as three peaks and two valleys lasing about 1–2 ka. Valley 4 with a central age of 120.5 ka is the most evident, suggesting that summer monsoon was weakened nearly to a level in glaciations. This indicates that summer monsoon has a nature of instability in centurymillennial scale change in the last interglacial.  相似文献   

9.
Geological climatic records and model simulations on the Asian summer monsoon climate change induced by insolation forcing of the Earth's precession are systematically reviewed in this paper. The presentation of the questions on the mechanism of the Asian monsoon evolution at the precession band, currently existing debates and future research directions are discussed. Since the early 1980s, more and more observed evidence and simulated results, especially the absolute-dated stalagmite records and orbital-scale transient model runs in the last few years, have indicated that the quasi-20ka period in the Quaternary monsoon climate change is caused by precession. However, debates still exist on the dynamic mechanism how precession affects the Asian monsoon. The "zero phase" hypothesis says that the Asian monsoon is merely controlled by summer insolation in the Northern Hemisphere (NH) while the "latent heat" hypothesis emphasizes the dominant effect of latent heat transport from the Southern Hemisphere (SH) besides the role of the northern insolation. The two hypotheses have separately been supported by some evidence. Although we are cognizant of the importance of northern solar radiation and the remote effect of southern insolation, it has still a long way to go before comprehensively understanding the evolutionary mechanism of the Asian monsoon. In view of the problems existing in present researches of monsoon-dominated climate change at the precession scale, we propose that studies on the environmental significance of geological monsoon proxies, feedback processes in the long-term transient simulations and intercomparisons between observations and modeling results should be strengthened in the future.  相似文献   

10.
Guliya ice core records, high lake-level records in the Qinghai-Xizang Plateau and at its north side as well as vegetation succession records indicated that during the period of 30–40 kaBP, namely the later age of the megainterstadial of last glacial period, or the marine oxygen isotope stage 3, the climate of the Qinghai-Xizang Plateau was exceptionally warm and humid, the temperature was 2–4°C higher than today and the precipitation was 40% to over 100% higher than the current average, all these suggested the existence of an exceedingly strong summer monsoon event. It has been inferred that the occurrence of such an event was attributed, on the one hand, to the stronger summer low pressure over the Plateau, which strengthened the attraction to the summer monsoon; on the other hand, to the vigorous evaporation of the tropic ocean surface, which promoted the moisture-rich southwest monsoon to flow over the Qinghai-Xizang Plateau. The background responsible for the formation of the very strong summer monsoon was that the period of 30–40 kaBP was just in the strong insolation stage of the 20ka precessional cycle, when the Qinghai-Xizang Plateau received extraordinary strong solar radiation and thus enlarged the thermodynamical contrast between the Plateau and the midsouth part of the Indian Ocean.  相似文献   

11.
2003年东亚夏季风活动的特点   总被引:4,自引:0,他引:4  
利用2003年国家气象中心提供的再分析资料以及台站降水资料,诊断分析了2003我国东部地区汛期降水和东亚夏季风的活动特点,并对二者之间的联系进行讨论。结果表明:(1)2003年南海夏季风于5月第5候在南海南部建立。6月第1候全面爆发,比常年偏晚,南海夏季风强度也比常年偏弱;(2)该年夏季,副热带高压的一个显著特点是强度强、位置偏西,其中从6月下旬至7月中旬,副热带高压的位置稳定少变,其北脊线位25oN附近,且副高位置偏西,这导致了长江以南的犬部分地区高温少雨。这个阶段副热带高压西侧的南风气流将南海地区的水汽源源不断地输送到淮河流域,是淮河流域强降水过程水汽主要来源。  相似文献   

12.
Based on deep-sea pollen results (512-76 m) from ODP Site 1143 in the southern South China Sea (SCS),the climate and vegetation evolution sequence on the surrounding islands and the exposed continental shelf are discussed. The pollen records show that the pollen influx was quite low before 8.15 Ma and increased dramatically afterwards. The influx changes can be ascribed,on one side,to tectonics deformations around the southern SCS resulting in rapid uplift of islands and subsequent increase of the sediment rates and pollen influx and on the other side to climate cooling and monsoon enhancement. Around 2.63 Ma was another obvious boundary,the increasing of pollen and spores influx since this time was mainly related to global climate cooling. Spectrum analysis of pollen influx values shows that 2 Ma,0.67 Ma,and 0.19-0.17 Ma cycles existed during 12-3.0 Ma,while 0.1 Ma and 46.9 ka cycles existed during 3.0-2.0 Ma.  相似文献   

13.
This note presents a new result of terrestrial mollusk study from the Luochuan loess section since the last 250 ka. A total of 213 samples, taken at intervals of 10 cm in the S0-L3 portion, were analyzed for fossil mollusks. Generally, 150–600 individuals were counted in each sample. According to the distribution of mollusk fossil assemblages in the loess section, 11 mollusk fossil zones have been recognized, representing different climatic and ecological conditions. Three main ecological groups were identified according to the temperature and moisture requirements of each taxon. The cold-aridiphilous group shows maxima at about 240–220, 190–182, 150–140 and 74–66 ka BP. The thermo-humidiphilous set has high abundances for at least 6 times in the section at about 246–240, 220–216, 170–158, 92–86, 60–44 and 10 kaBP. Our results show that variations in mollusk ecological groups are related with changes in the Earth orbital parameters at the 41 and 20 ka frequencies. Maxima in thermo-humidiphilous taxa are in phase with accretion intervals of obliquity (41 ka period), reflecting the East Asian summer monsoon with 41 ka period in controlling variations in terrestrial mollusk ecological groups. In addition, maxima in thermohumidiphilous taxa appearing at about 246–240, 220–216, 60 and 10 kaBP, are consistent with procession (20 ka period) maxima, indicating that the procession period also plays an important role in adjusting the ecological pattern of mollusk groups.  相似文献   

14.
使用美国NCEP/NCAR1958-1997年逐日资料,对南海季风爆发前后的气象要素场作了分析。结果表明:南海季风爆发时,南海南、北部要素场变化有差异,北部西南季风爆发特征更为显著。针对南海西南季风爆发特征,提出了用湿位势涡度定义季风指数,它能很好地反映夏季风爆发的特征。其中,用湿位热涡度定义的季风指数对长江中下及华北华南地区的旱涝具有一定的预示性。相关分析表明:前一年冬季的季风指数和秋季的季风指数分别与华北次年夏季降水、华南次年春季降水有显著的相关,而当年夏季的季风指数与长江中下游当年秋季降水呈显著正相关。  相似文献   

15.
Evidence and modeling study of droughts in China during 4―2 ka BP   总被引:2,自引:0,他引:2  
Wang  ShaoWu  Huang  JianBin  Wen  XinYu  Zhu  JinHong 《科学通报(英文版)》2008,53(14):2215-2221
Four periods with predominated droughts are identified in 4-2 ka BP according to documentary data, namely 3.6-3.5, 3.1-3.0, 2.8-2.7, and 2.45-2.35 ka BP. Palaeo-environmental data indicated that droughts were predominated in 4-2 ka BP in the south of Northeast China, Inner-Mongolia, east of Qinghai-Tibetan Plateau, and South China. Modeling study shows that precession may be responsible for the occurrence of droughts in 4-2 ka BP, integrating the GCM with forcing of insolation.  相似文献   

16.
Field measurements of air-sea CO2 exchange in three coral reef areas of the South China Sea (i.e. the Yongshu Reef atoll of the Nansha Islands, southern South China Sea (SCS); Yongxing Island of Xisha Islands, north-central SCS; and Luhuitou Fringing Reef in Sanya of Hainan Island, northern SCS) during the summers of 2008 and 2009 revealed that both air and surface seawater partial pressures of CO2 (pCO2) showed regular diurnal cycles. Minimum values occurred in the evening and maximum values in the morning. Air pCO2 in each of the three study areas showed small diurnal variations, while large diurnal variations were ob-served in seawater pCO2. The diurnal variation amplitude of seawater pCO2 was ~70 μmol mol–1 at the Yongshu Reef lagoon, 420–619 μmol mol–1 on the Yongxing Island reef flat, and 264–579 μmol mol–1 on the reef flat of the Luhuitou Fringing Reef, and 324–492 μmol mol–1 in an adjacent area just outside of this fringing reef. With respect to spatial relations, there were large differences in air-sea CO2 flux across the South China Sea (e.g. ~0.4 mmol CO2 m–2 d–1 at Yongshu Reef, ~4.7 mmol CO2 m–2 d–1 at Yongxing Island, and ~9.8 mmol CO2 m–2 d–1 at Luhuitou Fringing Reef). However, these positive values suggest that coral reef ecosystems of the SCS may be a net source of CO2 to the atmosphere. Additional analyses indicated that diurnal variations of surface seawater pCO2 in the shallow water reef flat are controlled mainly by biological metabolic processes, while those of deeper water lagoons and outer reef areas are regulated by both biological metabolism and hydrodynamic factors. Unlike the open ocean, inorganic metabolism plays a significant role in influencing seawater pCO2 variations in coral reef ecosystems.  相似文献   

17.
Global monsoon in a geological perspective   总被引:5,自引:1,他引:4  
Monsoon is now considered as a global system rather than regional phenomena only. For over 300 years, monsoon has been viewed as a gigantic land-sea breeze, but now satellite and conventional observations support an alternative hypothesis which considers monsoon as a manifestation of sea-sonal migration of the intertropical convergence zone (ITCZ) and, hence, a climate system of the global scale. As a low-latitude climate system, monsoon exists over all continents but Antarctica, and through all the geological history at least since the Phenorozoic. The time is ripe for systematical studies of monsoon variations in space and time. As evidenced by the geological records, the global monsoon is controlled by the Wilson cycle on the tectonic time scale (106―108 a). A “Mega-continent” produces “Mega-monsoon”, and its breakdown leads to weakening of the monsoon intensity. On the time scales of 104―105 a, the global monsoon displays the precessional cycles of ~20 ka and eccentricity cycles of 100- and 400-ka, i.e. the orbital cycles. On the time scales of 103 a and below, the global monsoon intensity is modulated by solar cy-cles and other factors. The cyclicity of global monsoon represents one of the fundamental factors re-sponsible for variations in the Earth surface system as well as for the environmental changes of the human society. The 400-ka long eccentricity cycles of the global monsoon is likened to “heartbeat” of the Earth system, and the precession cycle of the global monsoon was responsible for the collapse of several Asian and African ancient cultures at ~4000 years ago, whereas the Solar cycles led to the de-mise of the Maya civilization about a thousand years ago. Therefore, paleoclimatology should be fo-cused not only on the high-latitude processes centered at ice cap variations, but also on the low-latitude processes such as monsoons, as the latter are much more common in the geological his-tory compared to the glaciations.  相似文献   

18.
Analysis of daily precipitation samples for stable oxygen isotopes (δ^18O) collected at the Shiquanhe and Gerze (Gaize, Gertse) stations in the Ngari (Ali) region on the western Tibetan Plateau indicates that air temperature affects the δ^18O variations in precipitation at these stations. In summer, Shiquanhe and Gerze show strongly similar trends in precipitation δ^18O, especially in simultaneous precipitation events. Moreover, both stations experienced low δ^18O values in precipitation during the active monsoon period, resulting from the southwest monsoon (the summer phase of the Indian monsoon). However, during the break monsoon period (during the summer rainy season, when the monsoon circulation is disrupted), δ^18O values in summer precipitation remain relatively high and local moisture recycling generally controls the moisture sources. Air temperature correlations with δ^18O strengthen during the non-monsoon period (January--June, and October--December) due to continental air masses and the westerlies. In addition, evaporation also influences the δ^18O variations in precipitation. The observed temporal and spatial variations of δ^18O in precipitation on the western Tibetan Plateau and adjacent regions show that the late May and early June-the late August and early September time frame provides an important period for the transportation of moisture from various sources on the Tibetan Plateau, and that the region of the West Kunlun-Tanggula Ranges acts as a significant climatic divide on the Plateau, perhaps for all of western China.  相似文献   

19.
华北夏季降水年代际变化与东亚夏季风、大气环流异常   总被引:3,自引:0,他引:3  
利用华北夏季降水资料和NCEP/NCAR再分析资料,对华北夏季降水、东亚夏季风年代际变化特征及大气环流异常进行研究,发现一些有意义的结果:华北夏季降水变化存在明显的8a、18a周期,东亚夏季风变化18a、28a周期性比较明显,二者年代际变化特征明显,但华北夏季降水变化和东亚夏季风变化的周期不完全一致.华北夏季降水量变化在60年代中期发生了突变,东亚夏季风变化在70年代中期发生了突变.华北夏季降水与东亚夏季风变化存在很好的相关关系,强夏季风年,华北夏季降水一般偏多,弱夏季风年,华北夏季降水一般偏少,但又不完全一致.东亚夏季风减弱是造成华北夏季降水减少的一个重要因素,但不是唯一因素,华北夏季降水减少还与环流异常密切相关.在地面上,青臧高原地区、华北地区气温下降造成华北低压系统活动减少,不利于降水.在850 hPa层上,东亚中纬度的西南季风和副热带高压南部的偏东风、西北部的西南风异常减弱,使得西南气流输送水汽很多难以到达30°N以北的地区,而副热带高压西部外围偏东南、偏南气流输送到华北地区的水汽也大量减少,水汽不足造成华北夏季降水偏少.在500 hPa高度场上,80年代欧亚遥相关型表现与50年代相反,变为欧洲( )、乌拉尔山(-)、中亚( )形势,这种环流使得乌拉尔山高压脊减弱,贝加尔湖至青藏高原高空槽变浅,纬向环流表现突出,不利于冷暖空气南北交换.同时在500 hPa气温场上,80年代,西伯利亚至青藏高原西北部的冷槽明显东移南压到蒙古至华北地区,锋区位于华北以东以南位置,使得华北地区冷暖空气交汇减少,降水也因此减少.华北夏季降水减少是由于东亚夏季风减弱和大气环流异常造成的.  相似文献   

20.
河南三门峡王官剖面与甘肃武威沙沟剖面捕捉到了末次间冰期向末次冰期转换时期发生于72 ka前后持续时间约为2 ka的一暖性回返事件,两剖面的冬、夏季风替代指标对该暖性回返事件的反应在时间上大致同步(其时间段约为71~73 ka,在71.4~72.1 ka前后该暖性回返事件最强盛),暗示该暖性回返事件在东亚季风区可能是一普遍存在的气候突变事件.鉴于该暖性回返事件在全球其他地区的海洋、陆地、冰芯记录中也有较普遍的反映,我们认为该事件很可能是一次发生于气候转型期的全球普遍存在的暖性突变事件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号