首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sequence and analysis of rice chromosome 4   总被引:1,自引:0,他引:1  
Feng Q  Zhang Y  Hao P  Wang S  Fu G  Huang Y  Li Y  Zhu J  Liu Y  Hu X  Jia P  Zhang Y  Zhao Q  Ying K  Yu S  Tang Y  Weng Q  Zhang L  Lu Y  Mu J  Lu Y  Zhang LS  Yu Z  Fan D  Liu X  Lu T  Li C  Wu Y  Sun T  Lei H  Li T  Hu H  Guan J  Wu M  Zhang R  Zhou B  Chen Z  Chen L  Jin Z  Wang R  Yin H  Cai Z  Ren S  Lv G  Gu W  Zhu G  Tu Y  Jia J  Zhang Y  Chen J  Kang H  Chen X  Shao C  Sun Y  Hu Q  Zhang X  Zhang W  Wang L  Ding C  Sheng H  Gu J  Chen S  Ni L  Zhu F  Chen W  Lan L  Lai Y  Cheng Z  Gu M  Jiang J  Li J  Hong G  Xue Y  Han B 《Nature》2002,420(6913):316-320
Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.  相似文献   

2.
The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.  相似文献   

3.
Sequence and analysis of chromosome 2 of Dictyostelium discoideum   总被引:1,自引:0,他引:1  
The genome of the lower eukaryote Dictyostelium discoideum comprises six chromosomes. Here we report the sequence of the largest, chromosome 2, which at 8 megabases (Mb) represents about 25% of the genome. Despite an A + T content of nearly 80%, the chromosome codes for 2,799 predicted protein coding genes and 73 transfer RNA genes. This gene density, about 1 gene per 2.6 kilobases (kb), is surpassed only by Saccharomyces cerevisiae (one per 2 kb) and is similar to that of Schizosaccharomyces pombe (one per 2.5 kb). If we assume that the other chromosomes have a similar gene density, we can expect around 11,000 genes in the D. discoideum genome. A significant number of the genes show higher similarities to genes of vertebrates than to those of other fully sequenced eukaryotes. This analysis strengthens the view that the evolutionary position of D. discoideum is located before the branching of metazoa and fungi but after the divergence of the plant kingdom, placing it close to the base of metazoan evolution.  相似文献   

4.
The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.  相似文献   

5.
The genome of the model plant Arabidopsis thaliana has been sequenced by an international collaboration, The Arabidopsis Genome Initiative. Here we report the complete sequence of chromosome 5. This chromosome is 26 megabases long; it is the second largest Arabidopsis chromosome and represents 21% of the sequenced regions of the genome. The sequence of chromosomes 2 and 4 have been reported previously and that of chromosomes 1 and 3, together with an analysis of the complete genome sequence, are reported in this issue. Analysis of the sequence of chromosome 5 yields further insights into centromere structure and the sequence determinants of heterochromatin condensation. The 5,874 genes encoded on chromosome 5 reveal several new functions in plants, and the patterns of gene organization provide insights into the mechanisms and extent of genome evolution in plants.  相似文献   

6.
By scanning the whole genomic sequence of japonica rice using 45 known plant disease resistance (R) genes, we identified 2119 resistance gene homologs or analogs (RGAs) and verified that RGAs are not randomly distributed but tend to cluster in the rice genome. The RGAs were classified into 21 families according to their functional domain based on Hidden Markov model (HMM). By comparing the RGAs of japonica rice with the whole genomlc sequence of indica rice, we found 702 RGAs allelic between the two subspecies and revealed that 671 (95.6%) of them have length difference (InDels) in their genomic sequences (including coding and non-coding regions) between the two subspecies, suggesting that RGAs are highly polymorphic between the two subspecies in rice. We also exploited 402 PCR-based and co-dominant candidate RGA markers by designing primer pairs on the regions flanking the lnDels and validating them via e-PCR. The length differences of the candidate RGA markers between the two subspecies are from 1 to 742 hp, with an average of 10.26 hp. All related information of the RGAs is available from our web site(http://ibi.zju.edu.cn/RGAs/index.html).  相似文献   

7.
Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.  相似文献   

8.
Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana   总被引:21,自引:0,他引:21  
Arabidopsis thaliana (Arabidopsis) is unique among plant model organisms in having a small genome (130-140 Mb), excellent physical and genetic maps, and little repetitive DNA. Here we report the sequence of chromosome 2 from the Columbia ecotype in two gap-free assemblies (contigs) of 3.6 and 16 megabases (Mb). The latter represents the longest published stretch of uninterrupted DNA sequence assembled from any organism to date. Chromosome 2 represents 15% of the genome and encodes 4,037 genes, 49% of which have no predicted function. Roughly 250 tandem gene duplications were found in addition to large-scale duplications of about 0.5 and 4.5 Mb between chromosomes 2 and 1 and between chromosomes 2 and 4, respectively. Sequencing of nearly 2 Mb within the genetically defined centromere revealed a low density of recognizable genes, and a high density and diverse range of vestigial and presumably inactive mobile elements. More unexpected is what appears to be a recent insertion of a continuous stretch of 75% of the mitochondrial genome into chromosome 2.  相似文献   

9.
The genome of the flowering plant Arabidopsis thaliana has five chromosomes. Here we report the sequence of the largest, chromosome 1, in two contigs of around 14.2 and 14.6 megabases. The contigs extend from the telomeres to the centromeric borders, regions rich in transposons, retrotransposons and repetitive elements such as the 180-base-pair repeat. The chromosome represents 25% of the genome and contains about 6,850 open reading frames, 236 transfer RNAs (tRNAs) and 12 small nuclear RNAs. There are two clusters of tRNA genes at different places on the chromosome. One consists of 27 tRNA(Pro) genes and the other contains 27 tandem repeats of tRNA(Tyr)-tRNA(Tyr)-tRNA(Ser) genes. Chromosome 1 contains about 300 gene families with clustered duplications. There are also many repeat elements, representing 8% of the sequence.  相似文献   

10.
11.
To identify useful genes from wild rice which have been lost or weakened in cultivated rice has become more and more important for modern breeding strategy. In this study, a BC4 population derived from 94W1, an acces-sion of common wild rice (Oryza rufipogon Griff.) from Dongxiang in Jiangxi Province of China, as the donor, and a high-yielding Indica cultivar (O. sativa L.), "Guichao 2", as the recipient, was used to identify quantitative trait loci (QTL) associated with yield and its components. Based on the analysis for the genotype of BC4F1 population with 87 SSR markers distributed throughout the genome and investigation of the plant height, yield and yield components of BC4F2, a total of 52 QTLs, were detected. Of 7 QTLs associated with grain yield per plant, 2 QTLs on chro-mosome 2 and chromosome 11 for grain yield, explaining 16% and 11% of the phenotypic variance respectively, were identified. The alleles from Dongxiang common wild rice in those two loci could increase the yield of "Guichao 2" by 25.9% and 23.2% respectively. The QTL on chromosome 2 increasing grain yield of cultivar is actually a major gene, which did not coincide with any previously published QTLs in rice.  相似文献   

12.
We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.  相似文献   

13.
By analysis of the conserved elements in yeast U14 boxC/D snoRNA. the conserved elements in rice U14 boxC/D snoRNA have been speculated. Through computer search of the international rice genome database, two rice U14 snoRNA gene candidates are obtained. These two putative U14 snoRNA genes are closely linked on rice chromosome 2. The coding sequences of these two snoR-NAs exhibit the hallmark structure of boxC/D antisense snoRNA. They both have conserved boxC and boxD sequences and a 14nt-long complement to the sequence between 414nt and 427nt of rice 18S rRNA (according to GenBank accession no. X00755). The experimental evidence shows that these two snoRNAs are involved in the methylation of the complementary sequence of rice 18S rRNA. The existence and localization of these two snoRNAs are proved by RT-PCR and Northern blot. Further analysis shows that both of the newly found rice snoRNAs have high homology with maize U14 snoRNA. and they are named rice U14.1 snoRNA and U14.2 snoRNA respectively. The gene sequence encoding these two snoRNAs has been deposited in the GenBank database under accession number of AF332622.  相似文献   

14.
The map-based sequence of the rice genome   总被引:14,自引:0,他引:14  
Rice, one of the world's most important food plants, has important syntenic relationships with the other cereal species and is a model plant for the grasses. Here we present a map-based, finished quality sequence that covers 95% of the 389 Mb genome, including virtually all of the euchromatin and two complete centromeres. A total of 37,544 non-transposable-element-related protein-coding genes were identified, of which 71% had a putative homologue in Arabidopsis. In a reciprocal analysis, 90% of the Arabidopsis proteins had a putative homologue in the predicted rice proteome. Twenty-nine per cent of the 37,544 predicted genes appear in clustered gene families. The number and classes of transposable elements found in the rice genome are consistent with the expansion of syntenic regions in the maize and sorghum genomes. We find evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes. The map-based sequence has proven useful for the identification of genes underlying agronomic traits. The additional single-nucleotide polymorphisms and simple sequence repeats identified in our study should accelerate improvements in rice production.  相似文献   

15.
Genome sequence of the plant pathogen Ralstonia solanacearum   总被引:49,自引:0,他引:49  
Ralstonia solanacearum is a devastating, soil-borne plant pathogen with a global distribution and an unusually wide host range. It is a model system for the dissection of molecular determinants governing pathogenicity. We present here the complete genome sequence and its analysis of strain GMI1000. The 5.8-megabase (Mb) genome is organized into two replicons: a 3.7-Mb chromosome and a 2.1-Mb megaplasmid. Both replicons have a mosaic structure providing evidence for the acquisition of genes through horizontal gene transfer. Regions containing genetically mobile elements associated with the percentage of G+C bias may have an important function in genome evolution. The genome encodes many proteins potentially associated with a role in pathogenicity. In particular, many putative attachment factors were identified. The complete repertoire of type III secreted effector proteins can be studied. Over 40 candidates were identified. Comparison with other genomes suggests that bacterial plant pathogens and animal pathogens harbour distinct arrays of specialized type III-dependent effectors.  相似文献   

16.
Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.  相似文献   

17.
A primary physical map of rice chromosome 12 was constructed using marker-based chromosome landing and chromosome walking. A BAC library from IR64 was screened using 84 RFLP markers, 4 STS markers and 6 microsatellite markers on chromosome 12 by colony hybridization and polymerase chain reaction (PCR) amplification. A total of 59 contigs consisting of 419 BAC clones including 5 single-clones were physically aligned on rice chromosome 12 with the largest BAC contig covering 855 kb. The whole physical map had a size of ∼16 Mb and covered about 52% of rice chromosome 12. This physical map will be certainly helpful for map-based gene cloning of agronomically and biological important genes and understanding the genome structure of the chromosome. Foundation item: Supported by Rockefeller Foundation Biography: FU Bin-Ying (1965-), male, Ph. D. candidate, Reseach direction: plant molecular genetics.  相似文献   

18.
Resistance-like sequences have been amplified from first strand cDNA and genomic DNA of rice by PCR using oligonucleotide primers designed from sequence motifs conserved between resistance genes of tobacco andArabidopsis thaliana. 3 PCR clones, designatedOsr1, Osr2 andOsr3 which were 98% identical in nucleotide sequence level, have been found to be significantly homologous to known plant resistance genes and all contained the conserved motifs of NBS-LRR type resistance genes, such as P-loop, kinase2a, kinase3a and transmembrane domain.Southern hybridization revealed that rice resistance gene hornologueswere organized as a cluster in the genome. RFLP mapping using a DH population derived from anindica/japonka cross (Zhaiyeqing 8/Jingxi 17) and an RFLP linkage map assigned two copies ofOsrl and one copy ofOsr3 to the distal position of chromosome 12 where a blast resistance QTL has been mapped previously. Northern blot analysis showed thatOsrl gene was constitutively transcribed in rice leaves, shoots and roots. Further study concerning isolation of full-length cDNAs would be conducive to elucidating the functions of these genes.  相似文献   

19.
20.
Cytochrome P450 gene superfamily is widely involved in diverse processes of plant development and environmental responses including defense response to pathogens.We previously isolated a rice cDNA fragment in a DD-PCR screening for blast fungus-induced genes. In the current study, we isolated a CYP72A gene cluster consisting of 7 P450 CYP72A genes (CYP72A17-23) with the conserved cDNA sequence through the public rice genome data. There are total 14 putative CYP72A members in the rice genome, with high diversity at N-terminal sequences while high homology at C-terminal sequences of those 14 putative proteins. We analyzed expression profiles of the cloned 7 CYP72A genes during pathogen infection and development. The results showed that expression of CYP72A18, 19, 22 and 23 was differentially regulated in the incompatible and compatible interactions between rice and blast fungus. Except CYP72A20, a pseudogene, other 6 CYP72A genes also exhibited temporal and spatial expression patterns, respectively.These findings provide fundamental data for rice P450 gene function analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号