首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
穿层钻孔煤巷条带水力压裂防突技术及应用   总被引:1,自引:1,他引:0  
针对低渗高突煤层煤巷条带预抽区域瓦斯治理难题,运用弹性力学理论,结合高压水动力特性,提出穿层钻孔煤巷条带水力压裂防突技术,建立计算目标煤层起裂压力计算模型,集成配套井下压裂成套设备,并进行工业性试验。试验结果表明:技术实施后,压裂钻孔的瓦斯抽采浓度和抽采纯量曲线呈现"高—低—高"特点,体现了压裂改造的双重作用;相比于水力割缝孔和普通穿层孔,压裂孔的瓦斯抽采纯量分别提高了20倍和133倍;预掘煤巷处的残余瓦斯含量降到8m3/t以下,穿层钻孔煤巷条带水力压裂增透技术消突效果显著。  相似文献   

2.
井下煤层水力压裂裂缝导向机理及方法   总被引:2,自引:1,他引:1  
针对井下煤层水力压裂裂缝扩展无序导致抽采效率低的问题,提出水力压裂裂缝导向方法,即采用高压水射流割定向缝导向裂缝起裂及扩展。在压裂孔周边合理布置导向钻孔,压裂孔及导向钻孔均采用水射流割缝技术在煤孔中形成定向缝隙。在地应力作用下缝隙尖端形成剪切破坏区,在内水压的作用下裂缝在缝隙尖端起裂;通过计算射流割缝缝隙水平延长方向最大主应力方向得出,裂缝在尖端起裂后沿水平方向延伸;在此基础上研发了裂缝导向技术工艺,即钻孔布置工艺、封孔工艺及压裂工艺,并成功应用于典型低透气性煤层;试验结果表明:该方法能够导向裂缝的延伸,压裂半径为25 m以上;抽采数据表明瓦斯抽放平均浓度为68%,单孔平均抽放纯量为0.037m3/min;采用裂缝导向技术后相比普通孔瓦斯抽放纯量提高了11.26倍,抽放浓度提高了2.12倍。  相似文献   

3.
南桐矿区属煤与瓦斯突出区域,煤层透气性系数差,抽采难度大。为此公司在所属矿井应用水力压裂技术抽采煤层瓦斯。试验结果表明:压裂后,压裂孔瓦斯抽采浓度和抽采量呈现"波浪形(高位)长时间稳定缓慢下降"特点,压裂孔瓦斯抽采量大幅提升,单孔产气量比水力割缝孔和普通抽采孔分别提高436倍和570倍。而压裂影响区内抽采孔瓦斯抽采浓度和抽采量呈现"高位较快下降到零"的特点。水力压裂技术抽采煤层瓦斯效果明显,用于煤矿瓦斯治理经济效益显著,应用前景广阔。  相似文献   

4.
针对单一低透煤层瓦斯抽采浓度低、衰减快、瓦斯抽采困难等问题,提出了水力压裂增透技术.研究了水力压裂钻孔壁煤体起裂所需最小注水压力,分析了水力压裂过程中注水压力、流量等参数随注水时间动态变化特点,并对压裂前后煤层透气性系数变化和瓦斯抽采效果进行了考察.结果显示:实施水力压裂后,影响区内煤层透气性系数提高了20.32倍,平均瓦斯抽采浓度和纯量分别提高了4.1倍和5.1倍,水力压裂增透效果显著.  相似文献   

5.
针对单一低透煤层瓦斯抽采浓度低、衰减快、瓦斯抽采困难等问题,提出了水力压裂增透技术.研究了水力压裂钻孔壁煤体起裂所需最小注水压力,分析了水力压裂过程中注水压力、流量等参数随注水时间动态变化特点,并对压裂前后煤层透气性系数变化和瓦斯抽采效果进行了考察.结果显示:实施水力压裂后,影响区内煤层透气性系数提高了20.32倍,平均瓦斯抽采浓度和纯量分别提高了4.1倍和5.1倍,水力压裂增透效果显著.  相似文献   

6.
芦岭煤矿提高煤层瓦斯抽采率的技术途径是采用人为方法预先松动原始煤体,提高煤层的透气性、水力压裂、水力割缝等水力化措施以及预裂爆破等,合理布孔和改变钻孔参数。本文以U825工作面为例.分析不同的钻孔间距、钻孔孔径、布置方式及封孔材料的钻孔瓦斯抽采效果,为特厚构造煤层顺层钻空瓦斯抽采参数的合理设计提供依据。  相似文献   

7.
针对新安矿主采煤与瓦斯突出煤层无保护层开采且难于抽放的条件,在煤层底部施工岩巷和钻场,利用钻场向上方的掘进煤巷施工钻孔进行冲孔,经过合理布孔和严格控制钻孔出煤量,使得煤层透气性和瓦斯抽放量增加,冲孔后单孔平均抽放量增加约20倍,达到了加强瓦斯抽放目的,起到了消除工作面突出危险性的良好效果,底板巷水力冲孔能快速增加钻孔的瓦斯抽采量,是一种很好的区域消突措施.  相似文献   

8.
新河煤矿为煤与瓦斯严重突出的基建矿井,煤层透气性低、瓦斯含量高。采用顶板抽放巷下向穿层钻孔进行预抽煤层瓦斯,抽采效率低,条带消突周期长。为提高新河煤矿抽采效果,先后尝试了水力压裂、水力冲孔增透措施,抽采效率有所改善,但持续时间短。在现场实践的基础上,提出了水力压冲一体化技术,以"水力压裂单元增透,水力冲孔出煤卸压"为技术思路,探讨了其技术流程、卸压增透及多级裂缝的形成机理,通过现场水力压冲增透抽采试验,结果表明,水力压裂后进行水力冲孔,瓦斯涌出严重,平均单孔涌出瓦斯1 485 m3,是未进行水力压裂的4.9倍,试验后最大日抽采纯量1 731 m3/d,平均623 m3/d,是试验前的2.9倍。  相似文献   

9.
煤储层透气性低是制约煤矿瓦斯抽采的关键因素,为提高煤储层透气性,增加瓦斯抽采效果,依靠水力压裂技术,采用穿层钻孔对煤层进行激励,形成裂缝,达到增透的目的。同时,采用理论分析和现场试验的方法,对穿层钻孔水力压裂技术进行研究。压裂后压裂孔透气性系数增加了6~12倍,抽放纯量提高了24~30倍。水力压裂技术大幅地提高了煤层的透气性和钻孔瓦斯抽放量,是一种有效的煤储层增透工艺。  相似文献   

10.
张集煤矿13-1煤为深埋高地应力松软低透煤层,瓦斯预抽时间长且残余瓦斯含量超标,为提高煤层透气性,提高瓦斯抽采效率,采用理论分析、现场试验的方法对低透气性煤层水力压裂增透理论及技术进行了研究。研究结果表明:试验区域经水力压裂后,煤体瓦斯压力由原始煤体瓦斯压力1.05MPa降低至0.5MPa,煤层透气性系数提高了6.17倍,水力压裂影响半径沿倾向35m、沿走向50m,且目标区域煤层瓦斯预抽达标时间相比未压裂时缩短了35.8%,穿层钻孔水力压裂起到很好的增透增流效应。  相似文献   

11.
为增加低渗透高瓦斯煤层的透气性,提高瓦斯利用率和抽采效率,提出低渗透煤层复合增透的方法.利用RFPA2D-Flow和FLAC3D软件分别对水力压裂裂缝的起裂、延伸与扩展规律和CO_2增透钻孔内提前制造不同长度的预裂缝对爆破致裂增透效果的影响情况进行模拟.进行井下复合增透效果工业试验,运用瓦斯压力降低法分析预裂后煤层瓦斯抽采半径.结果表明:模拟注水压裂27 PMa时,割缝半径约2 m,随着煤壁预裂缝长度增加,CO_2爆破致裂影响半径呈线性递增的趋势.现场复合增透后煤层抽采率显著提高,有效半径由原来单一水力压裂的2 m增加到7 m左右.  相似文献   

12.
水力压裂增透技术在煤巷掘进中的应用   总被引:2,自引:0,他引:2  
针对高瓦斯低透气性突出煤层,若直接采用钻孔抽放瓦斯,则存在抽采效果差、抽放时间长、抽放率不高的问题。为提高低透气性煤层的抽放效率,达到预防瓦斯突出的效果,运用水力压裂增透技术在同华煤矿K1半煤岩巷掘进工作面进行了试验。试验结果表明,采用水力压裂能够增加煤层透气性,提高单孔瓦斯抽采浓度和流量,减少防突施工对掘进工作的影响,提高预抽瓦斯效果,减少掘进面生产期间的安全隐患。使掘进面瓦斯日抽采量增加120%以上、日掘进进度增加80%以上。  相似文献   

13.
瓦斯治理的根本措施是抽放,然而应用单一钻孔预抽瓦斯,钻孔直径是决定抽放效果的关键因素.孔径小,其自由面小,瓦斯的排放速度低,等待开采的时间较长,影响了矿井的生产效率,而孔径又不能太大,否则在煤层综合应力下,孔的形成和孔的稳定性会受到破坏,而且孔径大的钻孔钻进速度较慢,效率较低,而且钻孔的有效煤孔段往往只占整个钻孔的一小部分,完全没有必要施工孔径较大的钻孔.介绍了一种新型高压水射流自旋式割缝技术,该技术可以有效解决上述问题.高压水射流自旋式割缝设备主要由高压水泵、水箱、高压胶管、高压密封钻杆、旋转接头、力矩喷头和喷嘴组成,该技术是在瓦斯抽采钻孔完成后,利用钻机将切割钻具输送至孔内,采取后退切割的方式,对钻孔内煤体进行切割,形成若干个垂直于钻孔方向的圆盘状缝隙,使孔内煤体暴露面积增加,同时由于高压注水作用,缝隙周围裂隙增加使煤体的透气性增强,从而有效提高抽采效率.试验发现:该技术的割缝半径为0.6~0.7m,使用该技术切割后,瓦斯涌出量大幅增加,百米瓦斯自排量和瓦斯抽放量分别是非切割钻孔的5.6和4.5倍,且衰减系数有所增加.  相似文献   

14.
为提高深部煤层瓦斯抽采效率,研究抽采钻孔周围煤体的瓦斯渗流规律十分关键。文中基于煤体的各向异性和非均质性,考虑煤体应力变形场和瓦斯渗流场的交叉耦合作用,分析了煤层抽采中水力割缝钻孔周围瓦斯压力以及渗透率的时空演化规律。结果表明:煤体的各向异性和非均质性影响割缝钻孔周围的瓦斯渗流规律。对于瓦斯压力的变化,平行层理方向瓦斯压力降幅大于垂直层理方向,抽采影响范围分布呈现"椭圆形",煤体各向异性表征明显。对于渗透率的变化,平行层理方向的煤层渗透率高于垂直层理方向,抽采初期渗透率的增加幅度较快,随后逐渐减缓,渗透率变化曲线呈现不规则"锯齿形",煤体非均质性表征明显。将数值模拟结果与杨柳矿4~#钻场瓦斯抽采的实际监测情况相互对比,现场实测的瓦斯抽采情况与模拟得到情况基本吻合,从而验证了数值模拟的合理性及工程适用性。  相似文献   

15.
针对水力割缝钻孔周围的扰动裂隙范围以及合理的布孔间距问题,文中建立了水力割缝煤体多场耦合模型。以杨柳矿特定的地质条件为基础,考虑应力场、裂隙场以及渗流场耦合效应,开展了水力割缝钻孔周围瓦斯流场演化数值模拟研究。结果表明:水力割缝钻孔周围存在半径约为2 m的扰动裂隙圈,割缝孔周围瓦斯压力变化曲线存在"陡坡"现象。水力割缝钻孔瓦斯抽采的有效影响半径约为4.6 m,最适布孔间距约为7 m,与现场测试结果相吻合。多孔协同抽采30 d后,钻场控制区域均已消突,抽采效果理想。  相似文献   

16.
为提高低透煤层瓦斯抽采效果,提出了一种掏穴扩孔增透技术。以李嘴孜矿A1煤为研究对象,通过现场测试与分析,考察了A1煤掏穴扩孔前后瓦斯抽采影响半径,抽采浓度和抽采纯量;同时采用RFPA2D-Flow模拟软件模拟了扩孔前后煤层裂隙的起裂及扩展过程,分析了掏穴扩孔钻孔对煤层透气性的影响。结果表明:掏穴扩孔钻孔增加了钻孔内壁表面积,增大周围煤体裂隙,使得周围煤体中的应力得到释放。掏穴扩孔后,瓦斯抽采影响半径提高了1.3倍,抽采浓度提高1.9倍,抽采纯量提高了2.3倍,因此,掏穴扩孔钻孔具有提高钻孔瓦斯抽采效果,达到快速消突的目的。  相似文献   

17.
针对高瓦斯低透气性煤层石门揭煤过程中瓦斯抽采难的现状,提出了高压水射流割缝提高煤层透气性方法。在理论分析射流轴向速度的分布规律基础上,得出射流冲击力与煤体力学性质耦合作用关系;通过分析煤体颗粒运动、受力状态,得出钻孔倾角、水量与煤体颗粒流速之间的关系;基于连续损伤力学分析出煤体产生损伤破坏的临界值,确定了高压水射流割缝煤体有效半径;并将该技术在平顶山某矿-380 mS4〖KG-*6〗石门进行现场试验,试验结果表明钻进工程量减少了38.2%,瓦斯预抽率提高了2.86倍,预抽时间缩短了57.1%,预抽面积增加  相似文献   

18.
针对韩城矿区3#煤层渗透率较低,瓦斯抽采难度大、抽采效率低等难题,在理论分析液态CO_2低温相变增渗和驱替置换煤层瓦斯机理的基础上,提出了低压(2~3 MPa)液态CO_2顺层钻孔压注增透技术,研发了适用于煤矿井下的低压液态CO_2压注系统和工艺,确定了压注过程的关键参数。桑树坪2号井3#煤层工业性试验结果表明:整个CO_2压注过程大致可分为相态平衡建立、注液和保压3个阶段;液态CO_2在3#煤层中的渗流扩散半径超过18 m,此半径范围内瓦斯抽采浓度整体得到提高,抽采活跃期至少一个月。距压注孔6,12和18 m的抽采孔单孔瓦斯浓度平均值分别达41.66%,35.43%和24.14%,且随距压注孔间隔的增大,单孔瓦斯抽采浓度呈逐渐减小趋势,与钻孔内CO_2浓度变化趋势一致。整个抽采活跃期内,支管平均瓦斯抽采浓度和纯量分别达48.49%和1.42 m3/min,明显高于水力割缝后的瓦斯抽采效果,压注后32~40 d,衰减至29.37%和0.88 m3/min,仍高于原始煤层瓦斯抽采浓度。  相似文献   

19.
针对贵州省喀斯特地质条件下松软低透高瓦斯煤层掘进过程中瓦斯抽采难度大、抽采效率低、抽采时间长等难点问题,提出应用CO_2相变致裂增透解吸技术提高煤层透气性系数、增大煤层透气性、提高瓦斯抽采量和抽采效率。研究了CO_2相变致裂增透解吸技术对绿塘煤矿工作面卸压增透效果,并与深孔预裂卸压增透技术效果进行了对比研究,发现该区域CO_2相变致裂增透技术增透效果较明显,CO_2致裂与深孔预裂相比较,前者煤层透气性系数约为后者透气性系数的1.9倍,CO_2致裂后的衰减系数比深孔预裂后衰减系数低约20%,CO_2致裂后平均抽采浓度约为70%,结果表明:采用CO_2相变致裂增透解吸技术后,该煤矿总体抽采效率提高了约6倍,抽采达标周期大幅缩短,为同类矿井的瓦斯治理提供了可借鉴技术与经验。  相似文献   

20.
针对高瓦斯低透气性煤层瓦斯抽采难问题,利用数值模拟软件RFPA2D-Flow再现了采取煤层深孔爆破预裂后,瓦斯在煤层及爆生裂隙中的流动规律.研究结果表明,预裂圈内煤和岩石的孔隙率大大提高,煤层透气性显著增加,但当裂隙圈之间不相交时,瓦斯同样很难在完整的低透气性煤体中运移,因此只有当抽采瓦斯钻孔处在裂隙圈中才能高效抽采瓦斯.现场试验证实,低透气性煤层预裂后,有效导通裂隙增加,布置在裂隙圈内抽采瓦斯钻孔可以获得高效抽采瓦斯效果,从而降低煤与瓦斯突出危险性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号