首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
TEMPO-NaOCl-NaBr氧化体系氧化再生纤维素的动力学研究   总被引:2,自引:0,他引:2  
研究了2,2,6,6—四甲基哌啶氧化物自由基(TEMPO)—NaOCl—NaBr氧化体系氧化再生纤维素的动力学。研究结果表明TEMPO—NaOC1—NaBr氧化体系对再生纤维素的氧化可近似地用关于纤维素基质的一级反应动力学来描述。在本研究所用的TEMPO浓度范围内,氧化反应速率与TEMPO的浓度成正比。在较低浓度时,氧化反应速率与NaBr用量也成正比,但浓度较大时,氧化反应速率基本不随NaBr浓度增大而增大。温度对氧化反应速率常数的影响符合Arrhenius方程的规律,由此求得的粘胶纤维的表观活化能为66.2kJ/mol。这里还讨论了反应液pH值,纤维素的形态和结晶度对氧化反应速率的影响。  相似文献   

2.
用2,2,6,6-四甲基哌啶氧化物自由基(TEMPO)-NaBr-NaOCl氧化体系制备了氧化再生纤维素纤维,表征了该种氧化纤维素的结构和性能。FTIR红外光谱和^13C NMR波谱研究表明:该氧化体系能完全选择性氧化再生纤维素的C6位伯羟基,而C2、C3位仲羟基则无氧化迹象。制得的氧化再生纤维素纤维及其钠盐纤维的断裂强力和断裂延伸率随羧基质量分数的增加不断下降,这是因为在氧化过程中纤维表面被刻蚀,出现孔洞和裂纹的缘故。  相似文献   

3.
为探讨pH值对硝态氮反硝化体系的影响,设定初始pH范围为4~10,对反硝化过程中NO3-‐N、NO2-‐N、TN、TOC和△TOC/△TN的变化规律、反硝化动力学以及抑制机理进行研究.结果发现:最适宜的反硝化pH值为8,过酸过碱都不利于反硝化过程的进行.在pH=8时,反应时间最短,硝态氮的去除率为99.4%,TN的降解率为95.5%.亚硝态氮积累量在pH<7时小于1mg/L;pH>7时,随pH的增大而增大,最大积累率为22%.硝态氮比反硝化速率在pH=8时最大,为2.52mgNO-x‐N/(gMLVSS·h);亚硝态氮比反硝化速率在pH=7时最大,为1.66mgNO-x‐N/(gMLVSS·h).因此,反硝化最佳的pH值为7~8.  相似文献   

4.
为把炉法炭黑作为色素炭黑使用,需要对其进行水性高分子接枝,以提高炭黑在水中的分散稳定性.研完了液相氧化剂氧化两种炭黑前后表面挥发分和pH值的关系及表面官能团组成的变化,并对比了氧化前后炭黑的自由基接枝效果.实验发现,低结构、高比表面的炭黑易被液相氧化剂氧化,且氧化剂的浓度和氧化强度直接影响炭黑的氧化效果.氧化炭黑的挥发分与其pH值之间存在一阶指数衰减函数关系.氧化后炭黑表面的羧基和醌基含量增加造成了炭黑和水亲合力及炭黑接收自由基能力增加,从而提高了炭黑接枝水溶性高分子的接枝率.  相似文献   

5.
研究了2,2,6,6-四甲基哌啶氧化物自由基(TEMPO)/NaClO/NaBr氧化体系氧化棉纤维的动力学。结果表明,TEMPO/NaClO/NaBr氧化体系对棉纤维的氧化可用基于纤维素特殊结构的两个一级反应动力学来描述:即无定形区和结晶区的动力学过程。在所用的TEMPO浓度范围内,氧化反应速率与TEMPO的浓度成正比。在较低浓度时,氧化反应速率与NaBr用量也成正比,但NaBr浓度超过1.0 mmol/g时,氧化反应速率不随NaBr浓度增大而增大。温度对氧化反应速率常数的影响可以用Arrhenius方程来描述,并由Arrhenius方程求得棉纤维的表观活化能为56.66 kJ/mol。  相似文献   

6.
采用4-乙酰胺-TEMPO/NaClO/NaClO2氧化体系,以超声为辅助手段,在酸性条件下(pH=4.7)对可德兰多糖的伯羟基进行区域选择性氧化.氧化过程中,超声促进了亚硝鎓离子4-乙酰胺-TEMPO+的生成,加快了反应速率,且在同一反应时间内提高氧化产物的羧基含量约30%.红外光谱和核磁共振分析表明:在超声辅助作用下,可德兰多糖的伯羟基被成功的氧化为羧基,且氧化产物的羧基含量较无超声条件下的高.SEC-MALLS分析表明:在一定时间内,超声对氧化产物的相对分子质量及其分布影响较反应体系中活性自由基的要小,且所得氧化产物的分子更均一、分子链尺寸更小.  相似文献   

7.
采用污泥混合接种的方法,利用UASB(厌氧污泥床)反应器完成了厌氧氨氧化混培菌的培养与驯化并启动了实验室规模的厌氧氨氧化反应器。当含氮模拟废水进水氨氮浓度和亚硝氮浓度分别为3~5mmol/L和4~6mmol/L,进水氨氮、亚硝氮的容积负荷分别为2mmol/(L·d)和2.5mmol/(L·d),氨氮、亚硝氮的最大去除率分别可达63%和78%。对UASB反应器工艺运行条件的研究表明:厌氧氨氧化反应的最适pH为7.5,最适反应温度为35°C。厌氧氨氧化反应速率与亚硝氮浓度有关,当亚硝氮浓度大于10mmol/L时对厌氧氨氧化反应具有明显的抑制作用。  相似文献   

8.
初始pH值对废水反硝化脱氮的影响   总被引:2,自引:0,他引:2  
为探讨pH值对硝态氮反硝化体系的影响,设定初始pH范围为4-10,对反硝化过程中NO3-N、NO2-N、TN、TOC和△TOC/△TN的变化规律、反硝化动力学以及抑制机理进行研究. 结果发现:最适宜的反硝化pH值为8,过酸过碱都不利于反硝化过程的进行. 在pH=8时,反应时间最短,硝态氮的去除率为99.4%,TN的降解率为95.5%. 亚硝态氮积累量在pH〈7时小于1 mg/L;pH〉7时,随pH的增大而增大,最大积累率为22%. 硝态氮比反硝化速率在pH=8时最大,为2.52 mg NOx-N/(g MLVSS·h);亚硝态氮比反硝化速率在pH=7时最大,为1.66 mg NOx-N/(g MLVSS·h). 因此,反硝化最佳的pH值为7~8.  相似文献   

9.
研究了纳米TiO2对甘氨酸的光催化氧化性能及其氧化机理.结果表明,在实验浓度范围内,甘氨酸的光催化氧化符合准一级动力学反应.纳米TiO2的用量和溶液pH值都影响光催化反应.外加无机氧化物,能有效地捕获光致电子,增加溶液中羟基自由基的浓度,提高甘氨酸的光催化氧化能力.  相似文献   

10.
用NO2氧化二甲基硫醚(DMS)是合成二甲基亚砜(DMSO)的主要方法,反应过程受气液相传质影响很大.采用反应体积为120mL的连续搅拌釜式反应器,对该反应的宏观动力学进行了研究.在温度为30-60℃、NO2和DMS进料流量分别为0.01-0.10mol/min和0.005—0.05mol/min的范围内,考查了反应速率的变化,并测定了不同温度下NO2在DMSO中的饱和浓度.在热力学和动力学分析的基础上,推导出反应宏观动力学模型,由实验数据拟合出模型中的各参数.结果表明,该反应的活化能为21.64kJ/mol,液相组成变化时反应速率存在极大值,且模型计算值与实验值相吻合.  相似文献   

11.
在填料吸收塔中,考察O2的体积分数、温度和pH值等对FeⅡ(NTA)氧化的影响,并与FeⅡ(EDTA)的氧化进行比较.结果表明,在实验考察的FeⅡ(NTA)浓度范围(0~10 mmol·L-1),氧化过程对FeⅡ(NTA)浓度和O2的体积分数均为一级反应,反应活化能为17.5 kJ·mol-1,小于FeⅡ(EDTA)的氧化活化能,从而使FeⅡ(NTA)的氧化更快,同一条件下的氧化速率常数比FeⅡ(EDTA)的氧化速率常数大10倍以上.当该值小于5时,由于溶液中游离态Fe2 和络合态FeⅡ(NTA)共存,氧化过程中溶液pH值呈先升后降的趋势,而在pH值为6~9时,Fe2 均形成FeⅡ(NTA)络合物,氧化过程中反应液pH值持续下降,但氧化速率随pH值的增加而加快.  相似文献   

12.
在酸性人工海水中溶解亚硫酸钠(分析纯)模拟海水脱硫尾水,并进行强制曝气氧化实验,研究各因素对亚硫酸根的氧化影响.实验结果表明:水样 pH、S(IV)浓度(cS)、海水盐度、曝气强度和温度等的增加以及竹制活性炭的存在均能提高S(IV)的总氧化率,但各因素对氧化速率的影响程度不同,影响程度分别为:pH>温度、盐度>cS、曝气强度>活性炭.pH对S(IV)的氧化速率影响很大, pH为6时的氧化速率约是pH 为3.8时的40倍;pH 为3.7左右时,水样50℃的氧化速率约是15℃时的3.5倍;pH约为4时,盐度35‰的水样氧化速率约是清水的4倍;竹制活性炭通过提高水样pH来提高氧化速率,但其自身的催化氧化作用却不明显.研究显示,尾水曝气时保持高pH是第一要素.  相似文献   

13.
氧化纤维素的制备及吸附性能的研究   总被引:9,自引:0,他引:9  
比较了碱处理纤维素与未处理纤维素制备氧化纤维素(DAC)的过程,当氧化剂NalO4的质量分数为6.78%,介质的pH值为2,反应温度为35℃,反应时间为3h时,以纤维素为原料,DAC的醛基质量分数可达68.20%,若以碱纤维素为原料时,其醛基质量分数可提高到84.25%,氧化纤维素醛基质量分数为50%时对尿素氮的吸附性能最高。  相似文献   

14.
研究了壬基酚(NP)溶液初始浓度、溶液初始pH值、臭氧含量对NP降解的影响。结果表明:在PH值为3.0~9.0范围内,PH初始值越大,NP降解率越高;在5~20mg/L范围内,臭氧体系对它的降解过程遵循表观1级反应动力学规律,表观降解速率常量kobs为0.4738min^-1;臭氧含量不同时,NP的降解速率也不同,臭氧浓度越高,降解也越快。氧化过程中有小分子羧酸类物质生成。HPLC色谱图表明,在氧化过程中,没有含苯环结构中间产物的明显积累,可能是由于中间产物生成的量很少或者是由于这些中间产物易于进一步氧化降解形成对280nm紫外光没有吸收的产物(如苯环分裂的产物等)。  相似文献   

15.
本文测定了pH值对空气氧化亚铁离子的影响,证明溶液的pH值是影响亚铁离子氧化速率的重要因素,探讨了亚铁氧化反应的各种机理并提出铁的水解产物破坏水合亚铁离子“遮蔽效应”的自动催化氧化机理。  相似文献   

16.
通过二室单阴膜电解再生钠碱脱硫废液的试验和模型推导,研究了膜电解过程中再生效果与阴极进出口溶液pH值的关系.结果表明。二室单阴膜电解再生钠碱脱硫废液时。硫的电解效率随着电流密度的增大而明显增大,根据阴极进出口溶液pH值可以计算得到;出口液pH值在6.0—7.5的范围内,硫的电解效率上升速率较快,当pH值小于6.0或大于7.5时,硫的电解效率变化速率较慢,硫的理论电解效率应小于50%;且阴极进口液pH值在4.4—6.0的范围内模型有较好的稳定性,试验结果与模型具有较好的匹配性,模型可以较好地反映电解效果.  相似文献   

17.
采用GC-MS方法分析反应产物,对氯酸钠氧化β-紫罗兰酮的反应工艺进行研究,并探讨温度、时间、反应物配比和溶液的pH值对反应的影响。反应产物的结构采用红外光谱、质谱、氢核磁共振谱和元素分析等手段表征。研究结果表明:氯酸钠氧化β-紫罗兰酮的反应主要生成4-氧代-β-紫罗兰酮和5,6-环氧-β-紫罗兰酮,经重结晶和硅胶柱层析分离,纯度高于98%;4-氧代-β-紫罗兰酮的有利合成条件是反应温度为45℃,反应时间为24h,溶液的pH值为1~3,反应物配比n(β-ionone):n(NaClO3):n(NaI)为20:100:3,最佳收率为53.5%;5,6-环氧-β-紫罗兰酮有利的合成条件是反应温度为40℃,反应时间为24h,溶液的pH值为3,反应物配比n(pionone):n(NaClO3):n(NaI)为20:120:5,其收率为25.4%;未反应的β-紫罗兰酮经减压蒸馏回收后可重复使用。  相似文献   

18.
合成和表征了一种双核铜配合物Cu2(oxheel).该配合物和胶束形成的金属胶束被作为人工过氧化物酶用于催化过氧化氢氧化苯酚的反应.研究了双核铜配合物金属胶束催化苯酚氧化反应的机理,并建立了金属胶束催化苯酚氧化的动力学数学模型;讨论了过氧化氢/催化剂摩尔比、体系温度和体系酸度对催化反应速率的影响.  相似文献   

19.
UV-Fenton体系氧化降解邻氯苯酚废水反应动力学研究   总被引:2,自引:0,他引:2  
采用UV-Fenton高级氧化技术对邻氯苯酚废水进行了处理研究。从反应速率系数着手探讨了污染物初始浓度、双氧水加入量、亚铁离子浓度及pH值对反应降解速率的影响。用半衰期法对邻氯苯酚的反应级数进行了探讨,确定其在UV-Fenton体系降解过程中的表观反应级数为3/2,并初步建立了邻氯苯酚UV-Fenton降解的动力学模型。  相似文献   

20.
桃叶珊瑚甙的体外抗氧化研究   总被引:7,自引:0,他引:7  
研究了桃叶珊瑚甙对化学体系中产生的自由基的清除作用以及桃叶珊瑚甙对组织匀浆、线粒体、微粒体氧化损伤的保护作用.以Fenton反应和邻苯三酚自氧化反应产生自由基。分光光度法检测.结果显示,桃叶珊瑚甙有较强的清除自由基作用,对组织细胞及亚细胞膜性结构的氧化损伤有较好的保护作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号