首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用锌金属配合物DPIHQZn((E)-2-(4-(4,5-diphenyl-1H-imidazol-2-yl)styryl)quinolin-Zinc),将其掺杂到CBP中作为黄光发射层,制备了黄色有机电致发光器件(OLED),器件结构:ITO/2T-NATA(20 nm)/CBP:x wt.%DPIHQZn(30 nm)/Alq3(40 nm)/LiF(0.5 nm)/Al,研究了4种不同掺杂浓度(x=5,10,15,20)对黄光器件性能的影响,利用黄光发射层中主体材料与客体材料之间能量转移特性,得到了性能较好的有机电致黄光器件.在相同条件下,当掺杂浓度为15%时,其性能在4组器件中达到最佳,在驱动电压为14 V时呈黄光发射,器件最大亮度达到4 261 cd/m2,最大电流效率为0.84 cd/A,器件的色坐标稳定.  相似文献   

2.
为了提升印刷器件的性能,从印刷OLED显示像素制备的需求角度出发,采用喷墨打印工艺在像素坑中精准沉积含全氟化离子交联聚合物掺杂的空穴注入层PEDOT∶PSS∶PFI来提高空穴注入效率,而后在其上蒸镀其他功能层得到OLED像素阵列器件。与喷墨打印制备的PEDOT∶PSS空穴注入层器件对比发现,含全氟化离子交联聚合物掺杂空穴注入层的器件具有较好的发光均匀性,器件最大亮度达到4 325 cd/m2,最大电流效率达到5.5 cd/A。研究结果为多层印刷OLED显示器件的制备积累经验。  相似文献   

3.
简要本文合成了三种均三嗪衍生物TPTPA、TITPA和TCTPA,并利用其在电学和光学特性,将其作为发光/电子传输层材料制作有机电致发光器件(OLEDs). 其中,TCTPA具有比TPTPA和TITPA更高的荧光量子产率(PL). 从TPTPA到TCTPA其最低未占据轨道能级(LUMO)逐渐减少,这说明了TCTPA由于其共轭结构的增大,具有更高的电子迁移率. 以TCTPA作为发光/电子传输层的无掺杂OLED器件,在20V时亮度达到最大值2 612 cd/m2,其最大亮度效率和最大功率效率分别为1.72 cd/A 和1.35 lm/W. 将Ir(PPy)3、PVK、PBD等化合物,分别掺杂到以TCTPA为发光/电子传输层的OLED器件中,均展示出比无掺杂器件更高的亮度及效率.  相似文献   

4.
充分利用三重态激子是提高发光器件效率的重要途径.磷光材料和热致延迟荧光材料(thermally activated delayed fluorescence, TADF)均可以实现对三重态激子的利用.然而,目前在量子点发光二极管中,采用TADF材料来实现对三重态激子的利用进而提高发光效率的工作还很少.本文采用了TADF材料4,5-二(9-咔唑基)-邻苯二腈(2CzPN)掺杂聚(9-乙烯基咔唑)(PVK)(1:5)作为空穴传输层(hole transporting layer, HTL),制备了结构为ITO/PEDOT:PSS/PVK:2CzPN/InP/ZnS QDs/ZnO/Al的量子点发光器件.结果表明, 2CzPN的引入可以提升器件的空穴传输效率,使注入的电子和空穴趋于平衡;同时,通过2CzPN中的反系间窜越过程实现了对三重态激子的利用,并通过HTL和量子点InP/ZnS之间的F?rster能量转移过程提高了InP/ZnS无镉量子点发光二极管的效率,使其最大发光亮度达到513 cd/m2.相比未掺杂控制器件的最大发光亮度(407 cd/m2),实现了26%的增长.同时,使得最大电流效率较未掺杂控制器件提高了4倍,增加到1.6 cd/A.  相似文献   

5.
增强空穴注入能力是提高有机电致发光器件(OLEDs)光电性能的一个重要因素.采用碱金属化合物Cu I掺杂NPB结构作为器件的空穴注入层,制备了空穴注入能力增强的有机磷光器件.当发光亮度为1 000 cd/m2时,器件的驱动电压为6. 44 V,相比于参考器件降低了约2. 11 V;器件的最大功率效率为7. 7 lm/W,相比于参考器件提高了约71%;器件的最大亮度达到41 570 cd/m2.上述实验结果表明,优化的Cu I:NPB结构有效促进了器件的空穴注入和传输能力,从而降低了驱动电压,提高了发光亮度,改善了功率效率.  相似文献   

6.
通过对器件结构的优化设计,改善了白光有机电致发光器件的色度.该器件的结构为ITO/2T-NATA/NPBX/DPVBi/CBP:Ir(ppy)3/Alq3:DCJTB/BCP/Alq3/LiF/Al.当驱动电压为6 V时,器件的最大电流效率为5.94 cd/A.器件在驱动电压为19 V,电流密度为570 mA/cm2时,最大亮度达到13540 cd/m2,色坐标为(0.31,0.39).而且,当器件的亮度由数十cd/m2增大到最大亮度时,器件的色坐标稳定在(0.31,0.37)附近.  相似文献   

7.
通过改变红色荧光材料DCJTB的掺杂浓度设计了四个不同结构的器件,当DCJTB的掺杂浓度为0.8%时,平衡了器件中电子和空穴的传输能力,使载流子复合形成激子的几率增加,即使载流子的传输能力最优,又有效地抑制了器件的荧光淬灭效应,提高了器件的性能,器件的最大亮度为8 898 cd/cm2,最大效率为1.7 cd/A。  相似文献   

8.
利用真空蒸镀的方法,制备了结构为ITO/NPB(20 nm)/MCP(3 nm)/MCP:Firpic(z%,x nm)/TPBi(10nm)/Alq3(30 nm)/Cs2CO3:Ag2O(2 nm,20%)/Al(100 nm)的器件.研究了不同掺杂浓度(z=5,8,10和12)和不同厚度(x=5,10,15,20和25)对器件性能的影响.首先确定MCP:Firpic层的厚度为5 nm,调节掺杂浓度.结果表明当掺杂浓度为10%时,器件的效率和亮度都为最大.驱动电压为8 V时,最大电流效率为6.996 cd/A;驱动电压为15 V时,最大亮度为10 064 cd/m2.在10%的掺杂浓度下,调节MCP:Firpic层的厚度.当厚度为20 nm时,器件的性能较好.驱动电压为13 V时,电流密度为2.248 mA/cm2,效率为10.35 cd/A;驱动电压为21 V时,电流密度为304.16 mA/cm2,亮度为21 950 cd/m2.  相似文献   

9.
制备了一种ITO/CuPc/CuPc∶C60/Alq/Al结构的PIN有机太阳能电池,采用Cu-phthalocyanine(CuPc)和fullerene(C60)的共混层作为光吸收层,CuPc和Alq作为空穴传输层和电子传输层.利用真空蒸发镀膜法制备各层有机薄膜,并用I-V曲线和紫外可见吸收光谱来表征器件性能.研究了器件的光吸收层、电子传输层、空穴传输层的膜厚参数对器件性能的影响.结果表明,当器件光吸收层、电子传输层、空穴传输层的厚度分别为15,30,40 nm时,器件的性能达到最优化.优化器件的短路电流密度JSC为2.07 mA.cm-2,开路电压VOC为0.56 V,填充因子FF为0.46,器件的能量转换效率达到0.53%.  相似文献   

10.
本文利用无机材料ZnO作为空穴缓冲层,制备了结构为ITO/ZnO/NPB/Alq3/Al的有机电致发光器件。用计算机控制的KEITHLEY2400-PR655系统测量器件的电压-电流-亮度特性。研究结果表明,当ZnO薄膜的厚度为2 nm时,器件的电流效率可达1.65 cd/A,最大亮度为3 449 cd/m2;而没有加入缓冲层的同类器件,最大亮度仅为869.7 cd/m2,最大电流效率为0.46 cd/A。由此可以看出,加入ZnO空穴缓冲层后,最大亮度提高3.97倍,最大电流效率提高3.59倍。分析认为适当厚度的ZnO薄膜降低了发光层空穴的浓度,提高了电子和空穴的复合率,从而降低了电流密度,提高了器件的电流效率,改善了器件性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号