首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
在本文中,我们引入封闭可分解算子和封闭算子的谱容量的概念。并证明了如下的结果:(i)如果 T∈Q(X)(Q(X)表示复 Banach 空间 X 上有非空豫解集的封闭算子(不一定稠定)的全体)是2-可分解的,那末:(a)T 有 S(?)EP。(b)σ(T)=σ_(?)(T)。(c)对任意的开集 G((?)C),存在 Y∈SM(T)。使得(?)(d)(0) ∈SM(T)。(e)对于任意非零的 Y∈INV(T),σ(T|Y)≠(?)。(f)若 Y∈INV(T)且σ(T|Y)有界,那末 Y(?)D_T。(g)如果对于任意的 x∈D_T,σ(x,T)都是相界的,那末 T∈B(X)。(ii)如果 T∈Q(X),那末下列四条等价:(a)T 有2-谱容量;(b)T 有谱容量;(e)T2-可分解;(d)T 可分解并且,T 强可分解必须且只须 T 有强谱容量。(iii)如果 T∈Q(X)有2-谱容量 E,那末(a)suppE=σ(T)。(b)对任意的闭集 F(?)C,E(F)=X_T(F)∈SM(T)。  相似文献   

2.
设X是复B-空间,B(X)是X上有界线性算子全体,C是复平面,F是C的一切闭子集类,我们引入一类算子,并研究它的谱理论,算子T∈B(X)称为(AC)算子,若T有性质(A)与(C),我们证明:(1)T∈B(X)是(AC)算子当且仅当对F到X的闭子空间类的同态X(·)满足下述条件:(ⅰ)(F_1∩F_2)=X(F_1)∩X(F_2);(ⅱ)X(φ)={0},X(C)=X;(ⅲ)TX(F)X(F);(ⅳ)σ(T|X(F))F;(ⅴ)对x∈X若存在解析函数x(λ):CF→X,使(λI-T)x(λ)=x,则x(λ)∈X(F),λ∈CF,(2)设T∈B(X)是(AC)算子,则对任何F∈F,有:(ⅰ)若X_T(F)≠{0},则F∩σ(T)≠φ;(ⅱ)若X_T(F)={0},则F∩σ_p(T)=φ,(3)设T∈B(X),σ(T)位于光滑Jordan曲线Γ上,又对每个z∈Γ,存在Γ邻域V上非零解析函数f(z),使 ‖f(z)R(λ,T)‖≤M_z,λ≠z,λ∈V,M_z>0,则T是(AC)算子。  相似文献   

3.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体。T∈B(H)称为是满足a Weyl定理,若σa(T)\σaw(T)=πa00(T),其中σa(T),σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱,πa00(T)={λ∈isoσa(T):0dimN(T-λI)∞}。本文通过定义新的谱集,给出了算子演算满足a Weyl定理的判定方法,同时也考虑了a Weyl定理的摄动。  相似文献   

4.
令H为无限维复可分的Hilbert空间, B(H)为H上有界线性算子的全体。 若σa(T)\σea(T)=πa00(T),称算子T∈B(H)满足a-Weyl定理,其中σa(T)、σea(T)分别表示T的逼近点谱、本质逼近点谱, πa00(T)={λ∈iso σa(T):0a-Weyl定理的新的判定方法, 并讨论相关谱集的谱映射定理。  相似文献   

5.
令X表示复Banach空间,B(X)为X上的有界线性算子的Banach代数,C(X)为定义在X中的闭算子全体_∞表示扩充的复平面_∞=∪{∞}。设T∈C(Z),其定义域记为D(T),e(T)表示T的豫解集:λ∈ρ(T)(λI-T)~(-1)∈B(X),σ(T)=\ρ(T)与σ_∞(T)=_∞\ρ(T)分别为T的谱与扩充谱。总假定ρ(T)≠φ且∞ρ(T)。(T)表示在σ_∞(T)的某领域上解析上的函数所构成的集合。对于给定的α∈ρ(T),记  相似文献   

6.
设H为复的无限维可分的Hilbert空间,B(H)为H上的有界线性算子的全体。若σ(T)\σ_w(T)=π00(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σ_w(T)分别表示算子T的谱和Weyl谱,π00(T)表示谱集中孤立的有限重特征值的全体。首先给出了Hilbert空间上有界线性算子WeylKato分解的定义,并由Weyl-Kato分解的性质定义了一种新的谱集,利用该谱集刻画了算子函数演算满足Weyl定理的充要条件。  相似文献   

7.
研究了Hilbert空间上有界线性算子T的Weyl型定理的判定方法及等价性.根据一致Fredholm指标性质,定义了一种新的谱集2σ(T),通过该谱集和拓扑一致降标集ρτ(T)之间的关系,证明了:算子T满足Browder定理当且仅当ρτ(T)bρ(T)∪1σ(T)∪2σ(T);T满足Weyl定理当且仅当0π0(T)ρτ(T)bρ(T)∪1σ(T)∪2σ(T),其中bρ(T)={λ∈C:T-λI为Browder算子},1σ(T)为本质逼近点谱的一种变化,0π0(T)为谱集中孤立的有限重的特征值的全体;算子T与T*均满足a-Browder定理当且仅当ρτ(T)aρb(T)∪2σ(T)∪intSσF(T)∪{λ∈C:des(T-λI)∞},其中aρb(T)={λ∈C:T-λI为上半Fredholm算子且有有限的升标},SσF(T)和des(T)分别表示算子T的半Fredholm谱以及降标.  相似文献   

8.
设H为无限维复可分的Hilbert空间, B(H)为H上的有界线性算子的全体。 T∈B(H)称为是满足a-Weyl定理, 若σa(T)\σaw(T)=πa00(T), 其中σa(T), σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱, πa00(T)={λ∈iso σa(T):0<dim N(T-λI)<∞}。 本文通过定义新的谱集, 给出了算子演算满足a-Weyl定理的判定方法, 同时也考虑了a-Weyl定理的摄动。  相似文献   

9.
设H为复的无限维可分Hilbert空间,B(H)为H上有界线性算子的全体.若σ(T)\σw(T)=πoo(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,πroo(T)={λ∈isoσ(T):0dimN(T-λI)∞};当σ(T)\σw(T)∈roo(T)时,称T∈B(H)满足Browder定理.本文利用算子的广义Kato分解性质,刻画了算子在微小紧摄动下单值延拓性质(SVEP)与Weyl型定理之间的关系.  相似文献   

10.
令H为复的无限维可分的Hilbert空间, B(H)为H上有界线性算子的全体。称算子T∈B(H)满足Weyl定理, 若σ(T)\σw(T)=π00(T), 其中σ(T)和σw(T)分别表示算子T的谱集与Weyl谱, π00(T)={λ∈iso σ(T):0相似文献   

11.
令B(H)为无限复可分的Hilbert空间H上的有界线性算子全体。若T∈B(H),定义H(T)为在T的谱集σ(T)的某个邻域上解析但在σ(T)的任一分支上不为常数的函数全体。利用新定义的谱集,研究了算子T及f(T)(f∈H(T))的Weyl定理,并刻画了T和f(T)满足Weyl定理的等价条件。另外利用所得的结论,探索了p-hyponormal(或M-hyponormal)算子的Weyl定理。  相似文献   

12.
本文中用C表示复平面,C_∞表示扩充的复平面,C(X)为复 Banach 空间X上闭算子的全体。若T∈C(X),我们用D_T记T的定义域,ρ(T),σ(T),ρ_e(T)分别为T的予解集、谱和扩充谱。σ(x,T)是T在x处的局部谱。我们还定义T在x处的扩充局部谱σ_e(x,T)如下设Y为X的闭子空间,如有T(Y∩D_T)Y,则称Y是T的不变子空间记作Y∈I_(nv)(T)。T\Y和T~Y分别表示T在Y上限制及在X/Y上的诱导商算子,设Y∈I_(nv)(T),如果对任何Z∈I_(nv)(T),恒可经σ_(?)(T\Z)(?)σ_e(T\Y)推得ZY,则称Y为T的(e)极大谱  相似文献   

13.
令H为无限维复可分的Hilbert空间,H上有界线性算子的全体为B(H).用σ(T),σab(T)和σa(T)分别表示为算子T∈B(H)的谱集,Browder本质逼近点谱和逼近点谱.称算子T∈B(H)满足(R)性质,若σa(T)σab(T)=π00(T),其中π00(T)={λ∈iso σ(T)∶0相似文献   

14.
本文是文献[9],[10]的继续。在本文中,我们研究了(AC)算子,可分解算子,谱算子以及它们之间的关系。证明了:(1)若T∈B(X)是(AC)算子,对于每个E,F∈F,有则T是可分解算子。(2)T∈B(X)是谱算子当且仅当T是(AC)算子且满足下述条件:(ⅰ)对每个Borel子集δ,δ∈B,有X_T(δ)=X_T((δ∩δ)⊕此处⊕表示直接和;(ⅱ)对每个x∈X,数集是有界的,此处(3)若是(H)空间,是可分解算子,则下述条件是等价的:(ⅰ)(E)(ⅱ)①从推出(此处P_F是从到_T(F)上直交射影,⊕表示直交和)。它是B.L.Wadhwa定理的新形式。  相似文献   

15.
Banach空间上有界线性算子的广义谱分析   总被引:1,自引:0,他引:1  
在文献[1]的基础上,进一步在Banach空间上讨论了有界线性算子T的广义谱集σG(T),证明了当λ∈σR(T)∪σP(T)时R(Tλ)闭,则σG(T)即为经典谱分类中的T的连续谱集σC(T).  相似文献   

16.
研究了Hilbert空间X⊕X中的无穷维Hamilton算子HC=[A C 0 -A*]和HF=[A F B -A*]的纯虚谱的扰动,其中R(B)是闭的.给定算子A,B,证明了∩C∈S(X)σi(HC)=σiπ(A),∪C∈S(X)σi(HC)=σi(A),∩F∈S(X)σi(HF)=σiπ(APR(B)⊥),∪F∈S(X)σi(HF)=σi(APR(B)⊥),其中σi(T),σiπ(T),PM和S(X)分别表示T的纯虚谱,纯虚近似谱,全空间到M的正交投影和X中的所有自伴算子所成之集.  相似文献   

17.
若算子T有σ(T)\σw(T)■π00(T)成立,则称T满足Browder定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,且π00(T)={λ∈isoσ(T),0相似文献   

18.
本文讨论在Banach 空间X 上的闭算子T 和由函数演算所确定的算子f(T)之间的关系.得到下列主要结果:(1) 若f∈(?)_(1/m)(T),且T 是超可分解的,则f(T)也是超可分解的.其中(?)_(1/m)表示在σ(T)的某邻域内解析,且在“∞”处有m 级极点的复值函数.(2) 若f∈(?)_∞(T),且T 是超可分解的,则f(T)也是超可分解的.其中(?)_∞(T)表示在σ(T)∪{∞}的某邻域内解析的复值函数全体.  相似文献   

19.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体.T∈B(H)称为满足(R1)性质,若σa(T)\σab(T)?π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和本质逼近点谱,π00(T)={λ∈isoσ(T):0相似文献   

20.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体, T∈B(H)称为满足(R)性质,若σa(T)\σab(T)=π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和Browder本质逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}。 利用拓扑一致降标性质,首先给出了有界线性算子满足(R)性质的充要条件; 之后通过拓扑一致降标性质,得到了算子函数满足(R)性质的判定方法; 最后,上三角算子矩阵的(R)性质得到了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号