首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多材料多尺度3D打印是当前增材制造的前沿方向、研究难点和亟待突破的关键技术,它在组织工程、新材料、新一代电子产品、OLED、印刷电子、软体机器人等诸多领域有着非常广泛的应用,但是现有的增材制造技术在实现多材料跨尺度3D打印面临许多挑战性难题.材料喷射沉积成形技术在实现多材料多尺度3D打印具有非常突出的优势和巨大的潜能,本文提出一种电场驱动喷射沉积3D打印新方法,它突破了现有材料喷射沉积3D打印在打印材料、接收衬底、喷嘴材料、跨尺度制造等方面的一些不足和限制性,尤其是结合多喷头技术,能够实现跨尺度多材料复杂三维结构一体化制造.首先,阐述了该方法的基本原理,并通过理论分析和数值模拟揭示了其成形机理;随后,通过系统的实验研究,验证了电场驱动喷射沉积3D打印对于衬底(或者已打印结构)材质、打印高度和位置、导电和非导电喷嘴、打印材料普适性,以及所提出的两种工作模式在实现跨尺度制造方面的可行性和有效性;最后,通过4个典型打印案例,展示了提出的电场驱动喷射沉积3D打印在实现异质、跨尺度复杂三维结构化制造的能力和突出优势,证明了它在实现多材料多尺度3D打印方面的可行性和有效性.本研究为探索低成本多材料跨尺度3D打印提供了一种全新的解决方案.  相似文献   

2.
本文提出了一种以功能驱动的超材料结构数字化设计新方法,以实现电磁波传播方向90°偏折的伊顿(Eaton)透镜为典型应用目标,研究了其介电常数理论分布模型的数字化离散方法,获得了三维90°伊顿透镜介电常数离散化分布工程模型;通过理论计算建立起超材料单胞结构几何参数(木堆单胞结构柱宽ω与单胞尺寸a)与其等效介电常数之间的映射关系,从而实现三维90°伊顿透镜的工程模型向结构模型的转化;以光固化树脂(介电常数为3)、混合液体介质(介电常数从2.2到40)为原材料,采用光固化3D打印工艺,实现了液固耦合的三维90°伊顿透镜宏/微结构一体化制造;通过仿真和实验测试表明,所实现的三维伊顿透镜能够调控入射电磁波的传播方向,实现入射电磁波的90°偏折,且在12~18 GHz频段范围内具有宽频特性.本文所提出的数字化设计方法与3D打印工艺相结合,为实现面向电磁波传播调控的新型电磁波器件提供了一种途径.  相似文献   

3.
针对当前柔性电子、电子皮肤、可穿戴电子、软体机器人等领域使用的衬底面临挑战性的难题:难以同时满足一侧具有很好的柔性而另一侧具有较高刚度(变刚度功能梯度特性),以及散热性能和材料生物兼容性差的问题,本文提出一种PDMS/SiC功能梯度衬底,以PDMS为基体材料, SiC为增强相(填料);并且SiC含量在PDMS基体中从一侧到另一侧逐渐增大,呈现连续功能梯度和变刚度特性.为了解决现有技术难以制造PDMS/SiC功能梯度衬底的问题,提出一种基于多材料主动混合3D打印制造新方法,它能实现PDMS/SiC功能梯度衬底高效低成本制造.通过实验揭示了打印速度、背压、打印平台加热温度等主要工艺参数对打印衬底质量和性能的影响及其规律.利用提出的制备方法并结合优化的工艺参数,制造出高性能的PDMS/SiC功能梯度衬底.与传统的PDMS衬底相比,新型衬底其热导率提高了2.5倍; SiC含量50%一侧的杨氏模量增加了2.9倍,电学性能稳定;而且新型衬底刚度的空间变化呈现连续梯度特性.实验结果显示, PDMS/SiC功能梯度同时具有较好的柔性和较高刚度,而且还具有优良的散热性能,良好的绝缘性和生物兼容性,变刚度功能梯度特性,为柔性电子、电子皮肤、可穿戴电子、软体机器人等领域亟需的新一代高性能衬底提供了一种新的解决方案.  相似文献   

4.
多材料多尺度3D打印代表增材制造技术的前沿和未来发展方向,在功能驱动的"材料-结构-器件"的一体化制造,"创材"、"创物"和"创生"方面已经展示出巨大的潜能和广阔的应用前景.本文提出一种单喷头多材料多尺度3D打印新方法,针对核心功能部件——多材料主动混合喷头,开展了理论分析、数值模拟和实验验证的系统研究.提出一种多材料主动混合喷头,根据描述混合过程的物理方程(流体控制方程、湍流模型和稀物质扩散方程),阐述了叶轮直径、叶轮转速、流体黏度、体积力等因素对于混合效率和混合性能的影响及其规律;利用COMOSOL工程模拟软件,进一步揭示了叶轮直径、叶轮转速、流体黏度对于多材料混合的影响及其规律;最后,通过渐变色模型打印、变刚度模型打印和微尺度模型打印三个典型实验案例,验证了理论分析和数值模拟研究结果正确性和有效性.本研究为多材料多尺度3D打印奠定了理论基础,并为多材料多尺度3D打印装备的开发和工艺优化提供了重要理论支撑和方向性指导.  相似文献   

5.
3D打印技术的发展及其软件实现   总被引:1,自引:0,他引:1  
随着3D打印技术的不断发展,其已经超越传统单材均质加工技术的限制,成为可实现多材料、功能梯度材料、多色及真彩色表面纹理贴图制件的直接制造;可跨越多个尺度(从微观结构到零件级的宏观结构)直接制造;并与传统加工工艺结合,可实现多种兼顾精度和形状复杂度的新型加工方法.本文叙述了国内外上述技术的研究发展概况,并论述了传统建模技术、3D打印数据交换格式、数据处理软件架构等方面应对3D打印技术最新发展和挑战的对策.  相似文献   

6.
本文建立了一种面向高超声速飞行器的集成通用气动预测系统.通过引入CAD/CG建模技术实现了复杂飞行器3D几何模型的快速准确建模,并可以利用网络上的共享模型资源直接计算.引入FEM技术和自由网格生成算法,实现了复杂飞行器模型的快速网格生成.设计并开发了通用面元几何分析程序,建立了外法线快速矫正方法.基于面元气动分析理论开发了面元气动分析求解器,实现了面元气动计算和整机气动参数整合,能计算飞行器的气动力、力矩和气动导数.通过软件集成调用技术,将几何建模、面元划分、面元分析、面元气动计算以及后处理集成在统一的软件系统中,实现了高超声速飞行器气动参数的全自动计算与分析.HTV-2和航天飞机的仿真计算结果表明了该系统的有效性.  相似文献   

7.
形状记忆聚合物材料是一种在外界环境刺激下可发生主动形状变化的智能材料.基于这种智能材料的可变形结构在航空航天/生物医学等诸多领域显示出了巨大的应用潜力.但传统加工工艺限制了这种智能结构设计的复杂性和灵活性.4D打印技术作为智能材料的增材制造技术为形状记忆聚合物材料的进一步发展提供了新的契机.同时,4D打印形状记忆聚合物材料结构的实现为柔性电子/智能机器人/微创医学等高科技产业带来了全新的,更具智能化的发展方向.本文首先综述了4D打印形状记忆聚合物材料近年来的国内外研究进展,总结了4D打印形状记忆聚合物的实现方式及材料性能,然后介绍了基于形状记忆聚合物材料4D结构在各领域的应用研究,最后指出了4D打印形状记忆聚合物材料存在的问题及未来发展方向.  相似文献   

8.
基于光学扩散的景物3D重建方法具有小透镜下深度恢复精度高、重建深度范围广、只需要一台摄像机、不需要调整相机参数或者改变相机和景物之间距离等优势.但是目前并没有一种描述光学扩散中深度变化和扩散能量分布之间关系的严谨数学模型.本文引入了物理学中的热量辐射方程,建立了光扩散过程中的连续能量分布模型,并提出了一种基于光扩散的精确单目视觉全局景物3D深度信息获取方法.首先,详细分析了物理学中热辐射机理,建立了用来描述光扩散成像过程中的连续能量分布模型;然后,结合光扩散引起的图像模糊(点扩散函数扩散程度)与景物深度之间的数学关系,提出了一种基于光学扩散的景物3D形貌重建方法.最后,使用合成图像和真实图像分别验证了本文算法在3D重建中的有效性和精确性.  相似文献   

9.
均匀金属微滴喷射技术是基于喷墨打印的原理,于20世纪90年代初提出并发展起来的一种3D打印技术.它是以均匀金属微滴为基本成型单元,依据零件形状特征逐点、逐层"堆积"而实现三维结构的快速打印技术,具有喷射材料范围广、无约束自由成形和无需昂贵专用设备等优点,在微小复杂金属件制备、电路打印与电子封装以及结构功能一体化制造等领域具有广泛应用前景.由于金属材料具有熔点高、易氧化、粘性和表面张力大等特点,与非金属材料喷射沉积有很大差异.本文分析了金属微滴喷射方式及其机理,概述了此领域国内外研究现状,并结合笔者研究实践,阐述了金属微滴喷射沉积需要解决的关键技术及实例,如微滴喷射装置开发、喷射成型参数优化等,并对该技术的重点研究方向进行了展望.  相似文献   

10.
形状记忆聚合物是一种在外界刺激条件下产生形状变化的智能材料, 4D打印是基于可变形材料和3D打印技术的一种综合性技术,可变形材料中形状记忆聚合物的应用最为广泛,目前4D打印形状记忆聚合物在各个领域都有应用,尤其是在生物医疗领域具有巨大的应用价值. 4D打印技术突破了传统医学领域个性化订制的技术瓶颈,为生物医疗领域的进一步发展提供了新的契机.本文首先综述了形状记忆聚合物、3D打印技术以及4D打印形状记忆聚合物在生物医疗领域的国内外研究进展,并介绍了4D打印形状记忆聚合物在生物医疗领域的实例和应用价值,最后总结了4D打印形状记忆聚合物在生物医疗领域的应用前景、存在的问题以及未来的发展方向.  相似文献   

11.
热固性树脂所特有的共价键交联网络结构,使其及其复合材料的降解回收再利用、连接、损伤修复、3D打印等成为世界难题,也对学术界和工业界提出了重大挑战.人们为此付出了巨大的努力,但并未取得预期效果.最近出现的自适应热固性树脂,为解决这些难题提供了新的机会.本课题组针对典型的自适应热固性树脂,构建了跨尺度热压辅助连接界面力学模型及有限元实现方法,研究了小分子介入的酯键交换反应原理,实现了自适应热固性树脂的无压力连接,连接界面的断裂能可达4000 J/m2,实现了自适应热固性树脂的循环3D打印,自适应热固性树脂基复合材料的损伤修复、基体和纤维的近乎100%的回收再利用,实现了工业用环氧树脂基复合材料中碳纤维和玻璃纤维的回收.这些方法有希望成为热固性树脂基复合材料的变革性制造技术.本文拟综述这方面的最新研究进展,并指出存在的问题和挑战,提出理论研究、材料设计、工业应用等未来发展方向.  相似文献   

12.
复杂三维微纳结构在微纳机电系统、生物医疗、组织工程、新材料、新能源、高清显示、微流控器件、微纳光学器件、微纳传感器、微纳电子、生物芯片、光电子和印刷电子等领域有着巨大的产业需求,然而现有的各种微纳制造技术无论从技术层面还是在生产率、成本、材料等方面还难以满足高效、低成本批量化制造复杂三维微纳结构的工业级应用的需求.高效、低成本批量化制造复杂三维微纳结构(尤其是大面积复杂三维微纳结构)一直被认为是一项国际化难题,也是当前国际上学术界和产业界的研究热点,以及亟待突破的瓶颈问题.微纳尺度3D打印(微纳结构增材制造)在复杂三维微纳结构、高深宽比微纳结构以及复合材料三维微纳结构制造方面具有突出的潜能和优势,而且还具有设备简单、成本低、可使用材料种类多、无需掩模或模具、直接成形的优点.微纳尺度3D打印被美国麻省理工学院(MIT)的《技术评论》列为2014年十大具有颠覆性的新兴技术.本文论述了近年国际上微纳尺度3D打印重要的研究进展和代表性研究成果,微纳尺度3D打印典型重大应用,阐述了微纳尺度3D打印当前面临的挑战性问题,并探讨了微纳尺度3D打印未来的应用前景和发展方向及趋势.为深入开展微纳尺度3D打印、增材制造和微纳制造的科学研究和工程化应用提供一定的借鉴和参考作用.  相似文献   

13.
选择性激光烧结(selective laser sintering,SLS)是基于粉末床的激光3D打印技术.材料对成形件的精度和物理机械性能起着决定性作用,其中高分子基粉末是应用最早,也是目前应用最多、最成功的SLS材料,但是SLS高分子仍存在可用种类少和成形件性能较低等难题.通过添加微/纳米填料或者后处理浸渗等方法制备复合材料,来提高SLS成形件的某些性能以及增加SLS材料种类,已经成为SLS领域材料研究的热点和重点.本文将介绍SLS高分子复合材料的制备方法,综述国内外的研究现状,并对其研究趋势进行展望.  相似文献   

14.
连续下降运行(continuous descent operation,CDO)是减少大型飞机燃油消耗、降低噪声污染和二氧化碳排放的进近方式.但由于连续下降进近增加了飞机进场航迹的不确定性,降低了跑道容量,限制了CDO的实施.为了在高密度空域环境下实施CDO,需要借助于四维航迹运行技术,利用4D航迹预测和飞行引导系统实现可定时到达的精准飞行引导,降低CDO航迹的不确定性.本文给出了一种基于4D航迹的大型飞机飞行引导系统架构,介绍了4D航迹的描述方法和多约束情况下4D航迹规划过程;为提高估计到达时间的预测精度,提出了一种基于伪航路点的地速计算方法;最后给出了基于要求到达时间(required time of arrival,RTA)和纵向位置误差的速度调整策略.本文以某型运输机为例,进行了基于4D航迹的连续下降进近仿真,仿真结果验证本文所提引导架构和算法能够为大型客机提供面向定时到达的精确4D飞行引导能力.  相似文献   

15.
利用传统固相陶瓷烧结工艺在1520℃下制备Ba[Mg(1-x)/3ZrxNb2(1-x)/3]O3(BMZN,x=0,0.10,0.15)微波介质陶瓷.通过远红外光谱(FIR)来分析研究B位Zr4+取代对BMN陶瓷晶体结构和介电性能的影响.研究发现,随着Zr4+取代的增加,红外光谱上在370 cm-1附近的振动模发生分裂而出现新的极化模式;410 cm-1附近的振动模消失;230,290和510 cm-1附近的振动模的频率向高波数偏移且强度明显降低.这些红外振动模的变化表明随着Ba Zr O3的增加,陶瓷的晶体结构发生转变,由六方晶系逐步转变为立方晶系.分析了陶瓷介电性能与红外模式的内在联系.  相似文献   

16.
针对移轴相机内参数标定问题,提出了一种不依赖高精度合作标志且操作简便的相机标定方法.在深入分析移轴相机成像特性的基础上,建立了基于二维倾斜角的成像面与理想像面间的单应关系.进而提出了两步标定算法:第一步,通过成像面与标定板面的单应分解得到相机的内外参数初值;第二步,基于最大似然准则的相机参数非线性迭代优化.实验结果显示算法正确可靠,且收敛速度快,说明初值确定方法有效可行.此外实验结果表明切向畸变模型参数与像面二维倾斜角存在耦合,仅考虑径向畸变模型参数可获得更高精度的二维倾斜角.  相似文献   

17.
由于离子束加工机床工作运动空间的限制, 为了加工大型光学镜面, 本文提出了一种全新光学镜面加工方法——拼接加工方法. 论文首先从理论上分析解决了拼接加工工艺的系列关键技术问题, 如: 面形控制模型、拼接加工驻留时间解算算法、加工定位参数辨识与补偿等. 基于CCOS成形原理, 通过分析拼接加工面形控制机制, 建立了光学镜面拼接加工有限域叠加的非线性面形控制模型; 依据拼接加工有限域非线性问题特征, 提出了基于Bayesian原理的改进型SRL迭代法较好地解决了拼接加工的驻留时间求解问题; 通过分析拼接加工中对刀误差和材料去除率对加工精度和加工面形的影响分析, 提出了一种光学镜面离子束定位误差、去除率等工艺参数辨识算法. 通过上述研究, 首次建立了光学镜面离子束拼接加工基本加工理论、方法和工艺流程. 拼接加工工艺实验表明: 误差补偿后的加工收敛率可达10. 本文提出的理论和方法通过有效地解决拼接加工的关键技术问题使拼接加工与全口径加工一样, 能够实现对镜面的精确修形. 与此同时大大节约了加工系统制造和加工成本.  相似文献   

18.
齿轮是应用广泛的关键基础件,采用三维拓扑修形是控制齿轮性能的一个普遍趋势,现有的齿轮测量技术在获取齿面三维拓扑信息方面已逐渐成熟并得到应用.但目前各类齿轮精度评价体系普遍使用基于小样本及极值法获取的各项齿轮精度指标作为评价依据,这种方式对完整评价修形齿轮的质量及工艺分析存在诸多缺陷.基于全信息的齿轮精度评价体系则以齿轮全信息为样本,使用以统计分析方法获取的更有代表性的齿轮精度新指标作为评价依据.基于全信息的齿轮精度评价体系包括用于表达齿轮全信息的3D数学模型,基于3D模型定义的新指标,以及基于选取的新指标构建的新评价指标系统.基于全信息的齿轮精度评价体系可以克服现有齿轮精度评价体系的缺陷.新体系可充分利用测量数据,对测量误差不敏感,能真实完整地反映齿轮性能,有利于对被测齿轮作出更加科学的分析和评价,有利于进行工艺系统稳定性和加工能力的分析和改善.首先介绍齿面误差的3D表达方法;然后基于齿面误差的3D表达提出了特征数据集的定义方法和基于统计的评价指标计算方法,并选取指标建立了新的齿轮精度评价指标系统.最后用仿真试验和实测试验说明新评价体系的原理和识别误差规律的效果.  相似文献   

19.
人工关节假体的置换与长期植入后的失效问题将造成关节组织不可恢复的损失,小块可降解骨软骨关节支架具有恢复病变关节的力学环境和诱导新生组织生长的能力,为大尺寸关节病变缺损修复提供了新的治疗策略.大面积深层病变软骨关节病变位置的生理结构与力学环境的分析,以及多材料复合关节支架的仿生制造与手术方案是治疗方案开发的难点.本文提出一种新型多材料关节支架的仿生设计与制造技术和植入方法.以诱导组织生长为导向,选择聚乙二醇凝胶(polyethyleneglyco,PEG)、β-磷酸三钙陶瓷(β-tricalcium phosphate,β-TCP)、聚乳酸(polylactide,PLA)等生物材料开发新型支架;以羊膝关节为研究对象,通过反求工程、有限元分析和3D打印技术,利用有限的影像学数据信息,建立膝关节模型和易病变软骨区域;基于支架生理结构特征与关节缺损区机械承载能力的映射关系,建立大块仿生骨软骨支架的结构与稳定性固定结构.实验证明该支架在置换初期较好地恢复了缺损关节的力学环境.所提出的方法和支架有望为大面积骨软骨缺损的修复提供一种新的治疗方案.  相似文献   

20.
相位解缠是利用干涉合成孔径雷达(InSAR)进行地形高度反演的关键技术之一.由于实际地形复杂多变,使得精确解缠相位成为一个难题.文中给出两种变相位技术及实现方法.第一种技术利用缠绕相位本身的特点,通过构造辅助相位图,将整个相位域分割成若干4-连通域,利用局部缠绕相位梯度方差来避免错误的发生,再利用消去边界算法将这些连通域拼接起来,使得它们之间的相位跳变尽可能少,从而恢复连续的解缠相位;第二种技术通过构造参考面,改变与真实地形对应的缠绕相位,从而降低相位解缠的难度.将两种变相位技术结合起来提出一种相位解缠的方法.并利用由美国TOPSAR获取的干涉数据进行实验,分别验证了两种变相位技术的有效性,以及相位解缠方法的精确性和稳健性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号