首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于碳纳米管的超级电容器   总被引:34,自引:0,他引:34  
通过不同工艺手制造备了碳纳米管的固体电极。以这种电极为基础的超级电容器的体积比电容达到了107F/cm^3,证明这种电极是超级电容器的理想候选材料。在碳纳米管表面沉积RuO2.xH2O,制备出碳纳米管和RuO2.xH2O的复合电极。采用复合电极的电容器的比电容较之于纯碳纳米管电极显著提高。  相似文献   

2.
以NH_4VO_3为原料,通过180℃下水热反应和550℃下NH_3处理制备了多孔氮化钒(VN)纳米带气凝胶,并对多孔VN纳米带气凝胶的电化学性能进行了分析.SEM和TEM分析表明所制备的多孔VN纳米带的宽度为100~400 nm,孔尺寸为10~20 nm.电化学阻抗谱分析表明多孔VN纳米带气凝胶对I3.还原反应具有很高的催化活性,电荷迁跃电阻为1.36Ωcm~2.用多孔VN纳米带气凝胶电极组装的染料敏化太阳电池的光电转换效率为7.05%,与传统的Pt电极电池相近.循环伏安和恒流充放电实验表明多孔VN纳米带气凝胶具有较好的电容性能.当电流密度为0.5 A/g时,多孔VN纳米带气凝胶在2 mol/L KOH溶液中的比电容达到292.2 F/g.因此,所制备的多孔VN纳米带气凝胶可以作为高效的电极材料应用于染料敏化太阳电池对电极和超级电容器电极中.  相似文献   

3.
电化学储能材料的微结构、尺寸、形貌等特征直接影响着电化学储能设备的性能,例如能量密度、功率密度、寿命等.因此,合成高电化学活性的电极材料是储能设备性能的重要制约因素.在电极材料的合成过程中,化学反应是材料合成的第一个步骤,然后经过结晶过程最终得到电极材料.通过控制化学反应和结晶过程,可以得到具有不同活性的电极材料.电极材料制备过程中的化学反应以及电能储存过程中的电化学反应都是本文要研究的问题.虽然在材料合成方面取得了巨大的进步,能够合成各种不同形貌、结构和性能的电极材料,但是对化学反应如何控制材料的结晶、结晶过程如何影响材料的电化学性能以及电极材料和电化学活性的对应关系,依然缺少深入的理解.本文通过研究反应控制的结晶过程以及结晶影响的电化学性能,揭示化学反应-结晶、结晶-电化学性能和化学反应-电化学性能的关系,以及提高储能材料综合性能的途径.  相似文献   

4.
采用有序中孔硅为模板成功合成了排列有序的炭纳米棒阵列OCNR. XRD测试和TEM观测表明, OCNR为有序排列(p6mm)的炭纳米棒阵列构成. N2吸脱附测试表明, OCNR具有典型的中孔结构和集中的中孔分布. 与超大比表面积的活性炭Maxsorb相比, OCNR具有更好的电容特性, 更高的功率输出和优异的高频电容性能, 这都得益于OCNR规整的孔道有利于电解质水合离子的快速扩散. 循环伏安研究表明, 在50 mV/s的高电压扫描速度下, OCNR的比电容值仍可保持在166 F/g, 而此时Maxsorb的比电容值却降低到73 F/g. 值得一提的是, OCNR在提供高功率输出的同时, 仍能保持高的能量密度, 可以应用于对功率输出和能量密度都有较高要求的场合.  相似文献   

5.
电极是实现高效电化学储能的基础,而常规的电极大多采用半导体甚至绝缘体为活性材料,不仅存在导电性差、电化学利用率低、倍率性能差等问题,而且部分电极材料在反应过程中还存在体积膨胀严重、中间产物流失等缺点,导致电极循环稳定性差.解决这些问题的有效途径之一是从电极材料的微纳结构入手,设计兼具高电化学活性及高结构稳定性的材料.石墨烯具有优异的导电性、超高的比表面积、柔性的二维结构及良好的机械性能,可用于构建高性能复合电极.石墨烯基电极材料结构主要包括核壳结构、三维网络结构、多级孔结构、三明治结构等,这些结构均对电化学储能器件的性能有不同程度的提升.本文以结构设计为主线总结了石墨烯在二次电池(如锂离子电池、锂硫电池和锂空气电池)电极材料结构设计中的应用,分析了不同结构类型在改善电化学性能方面的优势,为提高电化学储能体系的性能带来启示.  相似文献   

6.
将真空共蒸发技术沉积的ZnTe/ZnTe:Cu复合薄膜应用于CdS/CdTe太阳电池, 作为碲化镉与金属背电极间的过渡层. 比较了有无ZnTe复合背接触层的两种CdTe电池的光、暗电流-电压(I-V)曲线和电容-电压(C-V)特性, 并研究了本征ZnTe薄膜厚度和背接触层的退火温度对电池性能的影响. 结果表明, 有复合背接触层的CdTe光伏器件, 能够消除暗I-V曲线饱和与光、暗I-V曲线交叉现象, 且填充因子在没有高阻透明薄膜的情况下达到了73%. 结合CdTe电池的能带图讨论了其中的原因.  相似文献   

7.
钠离子电池因钠源丰富、成本较低而受到科研工作者的广泛关注.钠离子电池主要由正极、负极、电解质、电流收集器等部分组成.相对于电极材料的研究,电解质材料的研究相对较少.但作为电池的组成部分,电解质却起着平衡及传输电荷的重要作用,其各组分的前线轨道(frontier molecular orbitals)能量不仅决定了电池的电化学平台,也影响着电池的热稳定性,而且,其稳定性及离子电导率是决定电池性能的关键参数.本文从优秀电解质应具备的特点入手,综述了常见液态电解质及固态电解质材料的结构特点、性质及主要改进方法.  相似文献   

8.
随着人工智能技术的快速发展,面向人机交互技术的新型柔性传感器的需求与日俱增.柔性传感器作为智能机械手、仿生假肢手等仿生智能系统获取外界信息的重要媒介,对实现仿生触觉感知能力以及提升系统智能化具有重要意义.当前,如何通过材料与结构设计,研制具有多模态感知能力的柔性触觉传感器,已成为柔性电子领域关键挑战之一.本文采用水热法制备了Te-聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(Te-PEDOT:PSS)复合热电材料.通过将其与三维多孔密胺泡沫骨架复合,并浸涂聚乙烯醇(PVA)薄层进行封装,实现了具有高界面稳定性的复合敏感材料体系可控制备.由此所组装的柔性触觉传感器件兼具Te-PEDOT:PSS的热电性能与三维泡沫电极板的电容性能,实现了压力/温度在接触/非接触模式下的双模态感知能力.进一步将其与智能机械手联用构建了感知反馈系统,对其在触觉感知方面应用性能进行了探索.  相似文献   

9.
基于超级电容的古伊-查普曼-斯特恩(CGS)双电层模型,本文建立一类不可逆热容热电转换装置循环的新模型.应用热力学理论和系统的能量平衡方程,导出该热容循环的回热量、输出功率和能量效率的表达式.通过数值计算,揭示热容循环的一般性能特性,分析循环的电量比、充电截止电压、回热过程的时间、双层距离、电解液浓度等重要性能参数对热容热电转换系统优化性能的影响.对于一些给定的参数,确定系统运行于最大功率下循环的电量比、双层距离、充放电过程的温度的优化值,给出循环的一些重要性能参数的优化范围.结果表明,为了获得循环的最优性能,采用CGS模型除了对充放电过程的温度和循环的电量比进行优化外,还可对电容的多孔电极的孔径进行优化,当充电截止电压为2 V时,优化的最大功率密度约为4.9 kW/m~2,相应的效率可达18.5%.本文所获得的结果可为实际热容热电转换装置优化设计和运行提供理论依据.  相似文献   

10.
以层状钙钛矿结构铁电薄膜Pt/SrBi2 Ta2 O9/Pt(Pt/SBT/Pt)三明治结构薄膜电容系统为例 ,研究了铁电薄膜高场耗散效应 .详细讨论了铁电薄膜高场漏电特性、击穿特性和瞬变电流特性以及铁电薄膜高场耗散效应产生的机理 .发现SBT薄膜漏电机制是从体限制过渡到电极限制为主 ,击穿电场与电极有效面积的对数成负线性关系 ,瞬变电流与极化反转无关 .理论分析与实验结果一致 .  相似文献   

11.
康向东  王平 《中国科学(E辑)》2014,(12):1271-1279
发展高效、安全的储氢材料/技术被公认为是推进氢能规模化商业应用的关键环节.相比于高压气态和低温液态储存方式,材料基固态储氢因能量密度高且安全性好,被认为最有发展前景.在诸多储氢材料中,轻金属配位硼氢化物氢含量多〉10 wt%,在储氢密度方面具有用作车载氢源的潜力,业已成为近年来储氢材料领域的研究热点.在简述轻金属配位硼氢化物储/放氢反应机理研究的基础上,着重从阴/阳离子替代、构建反应复合体系、纳米相结构调制等方面概述了改善硼氢化物综合储/放氢性能的最新研究进展,旨在明确轻金属硼氢化物储氢材料研究中的关键问题及未来研究方向.  相似文献   

12.
纳米构造的电极以及活性材料(如锂、镍以及锰等材料)的使用将使得电池的体积大为缩小,并应用到便携电子设备和电动车辆上。法国研究人员已经制造出锂离子电池的电极,不论从重量还是容量来看,其蓄能表现都数倍于传统的电极。这种新的锂离子电池的电极可以帮助使得手机或笔记本电  相似文献   

13.
信息通讯技术和电动汽车产业的快速发展产生了大量的废锂离子电池,其资源化回收成为资源可持续利用及环境保护的重要手段.但传统的回收过程工艺繁琐,资源化效率较低阻碍了产业的良性发展.为了缩短废锂离子电池的资源化工艺,选择离子液体作为加热介质,通过熔化黏结剂,分离铜箔和负极材料实现对废锂离子电池中铜金属的回收.回收过程发生急剧的热对流和热传导过程,利用搅拌机快速运转强化了热对流的过程和机械力分离正极材料,基于传热理论傅里叶定律建立了热传递过程数学模型.通过详细实验研究发现,当加热温度180℃、搅拌速度350 r/min、停留时间30 min,可以实现铜金属的短程高效回收.本技术的研发大大促进了铜铝金属的高效回收,打通了废锂离子电池的闭环供应链.  相似文献   

14.
为了促进我国超级电容器行业更好发展,通过分析超级电容器领域的专利布局来把握技术发展态势。以德温特数据库为数据源,运用统计计算和CiteSpace软件,从专利申请态势、主要竞争国、专利权人、技术热点、技术演变轨迹、技术发展趋势等多维度进行分析研究。结果表明:超级电容器领域由储电性能、电极材料核心技术已逐渐扩展到其在电气、电动汽车等领域的应用,呈现出多元化发展趋势;与本领域日本、美国及韩国主要国家相比,我国虽然在专利数量上具有一定的竞争优势,但研究主体过于分散孤立,海外布局薄弱,竞争实力还有待进一步加强。  相似文献   

15.
针对传统加工方法在加工非导电工程陶瓷时存在加工效率低、成本高以及加工表面质量差等缺点,本文提出了非导电工程陶瓷高能量电容高效电火花加工新方法,并进行了单脉冲放电试验研究,结果表明,该方法采用高电压大电容以及较高的放电能量,能够较大地提高材料去除效率,单次脉冲放电陶瓷去除量可达17.63mm3.对加工极性、峰值电压、电容、限流电阻、工具电极进给方式、工具电极截面积以及辅助电极厚度等参数对陶瓷蚀除坑体积、工具电极损耗以及辅助电极损耗等性能的影响进行了试验研究与理论分析,得到了相应的规律关系.采用扫描电子显微镜对单脉冲放电坑的微观形貌进行了观测.结果表明:放电坑表面呈溅射状,陶瓷主要以剥落方式去除,放电通道中心区域部分材料以熔化蒸发方式去除,且材料去除效果随着加工参数的增大而增强.  相似文献   

16.
随着国内外新能源汽车产业的快速发展,作为核心部件的锂离子电池行业正在成为新的风口。本文列举了在锂电行业具有技术竞争优势的美国、日本、韩国、中国等国在锂离子动力电池方面的战略规划,分析了各国在技术路线上的差异。随后对锂电行业的发展趋势进行预测。研究发现,锂离子电池重点关注能量密度、成本、寿命;高镍多元材料将成为未来车用动力电池的主流正极材料体系;新体系固态锂离子电池将成为锂电行业新的研究方向。最后,从电池关键技术、市场发展、后续回收利用等三方面对我国锂电行业日后发展提出了几点建议。  相似文献   

17.
目前国内外研究的各类微能源中,β辐射伏特效应同位素电池因能量密度高、寿命长、输出性能稳定等优点在许多领域具有广泛的应用前景.本文从辐射伏特效应的基本原理出发,通过蒙特卡罗程序MCNP模拟计算β粒子在半导体材料中的输运过程,得出了辐生电流、开路电压等性能参数的计算公式,探讨了少子扩散长度、掺杂浓度、结深等对性能的影响,并提出了采用硅基63Ni源的同位素电池的最佳设计参数:63Ni源质量厚度为1mg/cm2,单晶硅半导体P区掺杂浓度为1×1019cm?3,N区掺杂浓度为3.16×1016cm?3,结面积为1cm2,结深为0.3?m,总厚度不超过160?m.得到的短路电流、开路电压、最大输出功率及转化率分别为:573.3nA,0.253V,99.85nW,4.94%.为低功率场所,如微型机电系统、心脏起搏器等所需的微能源提供参数依据.  相似文献   

18.
β辐射伏特效应同位素微电池具有体积小、工作稳定性好、寿命长、能量密度高、抗干扰性强等优点,逐渐成为微能源研究的方向.本文以半导体物理理论为基础,提出基于宽禁带半导体材料GaN和放射性同位素^147Pm的同位素微电池最优化设计方案.引入对同位素源自吸收效应的考量,通过蒙特卡罗程序MCNP模拟计算β粒子在半导体材料中的输运过程,对同位素源与半导体材料的最优化厚度,半导体材料PN结结深、耗尽区厚度、掺杂浓度,以及电子空穴对的产生及收集情况进行了研究和分析.提出的β辐射伏特效应同位素微电池最优化设计方案可实现:^147Pm单次衰变在能量转换单元中沉积的能量为28.2keV;同位素电池的短路电流密度为1.636μA/cm^2,开路电压为3.16V,能量转化率为13.4%.  相似文献   

19.
近年来钙钛矿材料CH3NH3Pb X3(X=Cl,I,Br)因其在可见光范围的吸光系数大、成本低廉、能量转换效率高等优势而得到快速发展.本文采用低温化学水浴沉积制备出有序的Zn O纳米阵列,进一步在Zn O纳米阵列上旋涂不同体系的Ti O2,制备出Zn O/Ti O2复合阵列结构作为钙钛矿太阳能电池的电子传输层,通过改变Ti O2掺入体系探究电极的微结构变化和电池光电性能.研究表明,Zn O纳米阵列经过Ti O2浆料处理的复合体系组装的电池具有最优的光电性能,进一步考察Ti O2浆料浓度对电池性能的影响表明,当Ti O2浓度为0.1 mol/L时得到最佳性能,其组装电池的开路电压(Voc)达到0.93 V,短路电流(Jsc)为15.30 m A cm-2,填充因子(FF)为43%,效率(η)为6.07%.效率的提升主要是因为钙钛矿能深入Zn O阵列的间隙,同时在阵列的上部形成了均匀致密的覆盖层,有效提高了电池的光俘获,同时抑制了载流子的复合.在Zn O/Ti O2浆料复合阵列结构优化浆料浓度的基础上,进一步对纳米阵列采用Ti Cl4溶液进行处理,电池的光电性能得到大幅提升:Voc=0.99 V,Jsc=19.09 m A cm-2,FF=58%,效率η达到11%.性能提升的原因主要是Ti Cl4溶液对复合纳米阵列的处理,引入了小Ti O2纳米颗粒到Zn O/Ti O2浆料复合阵列结构中,有效地填补了阵列中的间隙,后续旋涂钙钛矿材料,阵列上部的钙钛矿覆盖层和间隙中的钙钛矿纳米晶,其光照后产生的载流子都可以与电子传输层有很好的接触,从而快速地经由Zn O阵列传导至导电衬底,此外小纳米颗粒的引入,也增大了电极的表面积,提高了对钙钛矿物质的吸附,增大了光俘获,因而电池的整体性能都得到提高.  相似文献   

20.
数据驱动新材料产业发展是第四研究范式促进材料创新,加快材料应用的多学科多领域交叉融合的技术热点.机器学习(machine learning, ML)作为一种重要的数据驱动方法,其结合第一性原理计算在材料科学、化学、物理学和计算机等跨学科领域展现出巨大的优势,为储能电池新材料的快速发展带来了新的机遇.为帮助研究人员了解这一新兴领域,本文系统地详述了高通量计算筛选和ML在储能电池材料研究中的最新进展,概括和总结了目前国内外应用较为广泛的在线材料数据库,举例介绍了新数据库的多层次构建,分析了目前数据采集方面的一些难点.论文进一步介绍了ML方法在高通量计算筛选、材料性质预测、材料结构与电化学性能构效关系研究和材料设计方面的应用实例,最后分析讨论了当前ML在储能电池领域面临的一些挑战,并展望了该领域的前沿研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号