首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究新型tacrine双联体bis(7)-tacrine对NMDA受体的作用位点.方法:大鼠海马神经元原代培养,全细胞膜片钳记录培养大鼠海马神经元上NMDA激活电流变化.结果:细胞外液pH值从8.1改变到6.7,在细胞外液中加入二硫苏糖醇(2 mmol/L)、精胺(10 mol/L)、镁离子(50~500 mol...  相似文献   

2.
B Miller  M Sarantis  S F Traynelis  D Attwell 《Nature》1992,355(6362):722-725
Arachidonic acid is released by phospholipase A2 when activation of N-methyl-D-aspartate (NMDA) receptors by neurotransmitter glutamate raises the calcium concentration in neurons, for example during the initiation of long-term potentiation and during brain anoxia. Here we investigate the effect of arachidonic acid on glutamate-gated ion channels by whole-cell clamping isolated cerebellar granule cells. Arachidonic acid potentiates, and makes more transient, the current through NMDA receptor channels, and slightly reduces the current through non-NMDA receptor channels. Potentiation of the NMDA receptor current results from an increase in channel open probability, with no change in open channel current. We observe potentiation even with saturating levels of agonist at the glutamate- and glycine-binding sites on these channels; it does not result from conversion of arachidonic acid to lipoxygenase or cyclooxygenase derivatives, or from activation of protein kinase C. Arachidonic acid may act by binding to a site on the NMDA receptor, or by modifying the receptor's lipid environment. Our results suggest that arachidonic acid released by activation of NMDA (or other) receptors will potentiate NMDA receptor currents, and thus amplify increases in intracellular calcium concentration caused by glutamate. This may explain why inhibition of phospholipase A2 blocks the induction of long-term potentiation.  相似文献   

3.
Y M Song  L Y Huang 《Nature》1990,348(6298):242-245
Glycine is an important inhibitory transmitter in the brainstem and spinal cord. In the trigeminal subnucleus caudalis (medullary dorsal horn) and in the spinal dorsal horn (the relaying centres for processing pain and sensory information), glycine inhibits the glutamate-evoked depolarization and depresses firing of neurons. The binding of glycine to its receptor produces a large increase in Cl- conductance, which causes membrane hyperpolarization. The selectivity and gating properties of glycine receptor channels have been well characterized; the glycine receptor molecules have also been purified. The amino-acid sequence, deduced from complementary DNA clones encoding one of the peptides (the 48K subunit), shows significant homology with gamma-aminobutyric acid A (GABAA) and nicotinic acetylcholine receptor subunits, suggesting that glycine receptors may belong to a superfamily of chemically gated channel proteins. However, very little is known about the modulation of glycine receptor channels. We have investigated the regulation of strychnine-sensitive glycine receptor channels by cyclic AMP-dependent protein kinase in neurons isolated from spinal trigeminal nucleus of rat and report here that the protein kinase A dramatically increased the glycine-induced Cl- currents by increasing the probability of the channel openings. GS protein, which is sensitive to cholera toxin, was involved in the modulation.  相似文献   

4.
Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons.   总被引:20,自引:0,他引:20  
S F Traynelis  S G Cull-Candy 《Nature》1990,345(6273):347-350
Mammalian neurons contain at least three types of excitatory amino-acid receptors, selectively activated by N-methyl-D-aspartate (NMDA) or aspartate, (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate ((S)-AMPA) and kainate. An important aspect of NMDA receptors is their regulation by a variety of factors such as glycine, Mg2+ and Zn2+ that are present in vivo. We show here that NMDA receptor responses are selectively inhibited by protons, with a 50% inhibitory concentration (IC50) that is close to physiological pH, implying that NMDA receptors are not fully active under normal conditions. (S)-AMPA and kainate responses remain unchanged at similar pH levels. Proton inhibition is voltage-insensitive and does not result either from fast channel block, a change in channel conductance, or an increase in the 50% excitatory concentration (EC50) of aspartate/NMDA or glycine. Instead, protons seem to decrease markedly the opening frequency of 30-50 pS NMDA channels, and reduce the relative proportion of longer bursts. This feature of NMDA receptors could be relevant to neurotoxic activation of NMDA receptors during ischaemia, as well as to seizure generation, as extracellular proton changes occur during both of these pathological situations. Furthermore, these results may have implications for normal NMDA receptor function as transient changes in extracellular protons occur during synaptic transmission.  相似文献   

5.
S G Cull-Candy  M M Usowicz 《Nature》1987,325(6104):525-528
In the mammalian central nervous system amino acids such as L-glutamate and L-aspartate are thought to act as fast synaptic transmitters. It has been suggested that at least three pharmacologically-distinguishable types of glutamate receptor occur in central neurons and that these are selectively activated by the glutamate analogues N-methyl-D-aspartate (NMDA), quisqualate and kainate. These three receptor types would be expected to open ion channels with different conductances. Hence if agonists produce similar channel conductances this would suggest they are acting on the same receptor. Another possibility is suggested by experiments on spinal neurons, where GABA (gamma-amino butyric acid) and glycine appear to open different sub-conductance levels of one class of channel while acting on different receptors. By analogy, several types of glutamate receptor could also be linked to a single type of channel with several sub-conductance states. We have examined these possibilities in cerebellar neurons by analysing the single-channel currents activated by L-glutamate, L-aspartate, NMDA, quisqualate and kainate in excised membrane patches. All of these agonists are capable of opening channels with at least five different conductance levels, the largest being about 45-50 pS. NMDA predominantly activated conductance levels above 30 pS while quisqualate and kainate mainly activated ones below 20 pS. The presence of clear transitions between levels favours the idea that the five main levels are all sub-states of the same type of channel.  相似文献   

6.
A Malgaroli  R W Tsien 《Nature》1992,357(6374):134-139
Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quantal responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.  相似文献   

7.
应用全细胞膜片钳技术记录急性分离的小鼠三叉神经节细胞电压门控性钠通道电流,观察白细胞介素-1β对河豚毒素敏感性钠电流的影响,拟从离子通道水平探讨白细胞介素-1β调节颜面部痛的分子机制.结果发现白细胞介素-1β双相调节三叉神经节细胞河豚毒素敏感性钠通道,低浓度白细胞介素-1β(1ng/mL和10ng/mL)抑制三叉神经节细胞河豚毒素敏感性钠电流锋值,其中1ng/mL白细胞介素-1β使河豚毒素敏感性钠通道半失活电压向超极化方向偏移,复活时间常数延长.高浓度白细胞介素-1β(100ng/mL)在给药即刻增强三叉神经节细胞河豚毒素敏感性钠电流锋值,使河豚毒素敏感性钠通道半激活电压向超极化方向偏移,而不影响其失活及复活特性.高、低浓度白细胞介素-1β对三叉神经节细胞河豚毒素敏感性钠电流锋值的效应具有可逆性特点.结果表明白细胞介素-1β双相调节三叉神经节细胞河豚毒素敏感性钠通道,可部分解释白细胞介素-1β双相调节痛觉的产生及对神经元的损害和保护双相效应.  相似文献   

8.
A Rozov  N Burnashev 《Nature》1999,401(6753):594-598
At many glutamatergic synapses in the brain, calcium-permeable alpha - amino - 3 - hydro - 5 - methyl - 4 - isoxazolepropionate receptor (AMPAR) channels mediate fast excitatory transmission. These channels are blocked by endogenous intracellular polyamines, which are found in virtually every type of cell. In excised patches, use-dependent relief of polyamine block enhances glutamate-evoked currents through recombinant and native calcium-permeable, polyamine-sensitive AMPAR channels. The contribution of polyamine unblock to synaptic currents during high-frequency stimulation may be to facilitate currents and maintain current amplitudes in the face of a slow recovery from desensitization or presynaptic depression. Here we show, on pairs and triples of synaptically connected neurons in slices, that this mechanism contributes to short-term plasticity in local circuits formed by presynaptic pyramidal neurons and postsynaptic multipolar interneurons in layer 2/3 of rat neocortex. Activity-dependent relief from polyamine block of postsynaptic calcium-permeable AMPARs in the interneurons either reduces the rate of paired-pulse depression in a frequency-dependent manner or, at a given stimulation frequency, induces facilitation of a synaptic response that would otherwise depress. This mechanism for the enhancement of synaptic gain appears to be entirely postsynaptic.  相似文献   

9.
Kim J  Chung YD  Park DY  Choi S  Shin DW  Soh H  Lee HW  Son W  Yim J  Park CS  Kernan MJ  Kim C 《Nature》2003,424(6944):81-84
The many types of insect ear share a common sensory element, the chordotonal organ, in which sound-induced antennal or tympanal vibrations are transmitted to ciliated sensory neurons and transduced to receptor potentials. However, the molecular identity of the transducing ion channels in chordotonal neurons, or in any auditory system, is still unknown. Drosophila that are mutant for NOMPC, a transient receptor potential (TRP) superfamily ion channel, lack receptor potentials and currents in tactile bristles but retain most of the antennal sound-evoked response, suggesting that a different channel is the primary transducer in chordotonal organs. Here we describe the Drosophila Nanchung (Nan) protein, an ion channel subunit similar to vanilloid-receptor-related (TRPV) channels of the TRP superfamily. Nan mediates hypo-osmotically activated calcium influx and cation currents in cultured cells. It is expressed in vivo exclusively in chordotonal neurons and is localized to their sensory cilia. Antennal sound-evoked potentials are completely absent in mutants lacking Nan, showing that it is an essential component of the chordotonal mechanotransducer.  相似文献   

10.
Káradóttir R  Cavelier P  Bergersen LH  Attwell D 《Nature》2005,438(7071):1162-1166
Glutamate-mediated damage to oligodendrocytes contributes to mental or physical impairment in periventricular leukomalacia (pre- or perinatal white matter injury leading to cerebral palsy), spinal cord injury, multiple sclerosis and stroke. Unlike neurons, white matter oligodendrocytes reportedly lack NMDA (N-methyl-d-aspartate) receptors. It is believed that glutamate damages oligodendrocytes, especially their precursor cells, by acting on calcium-permeable AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptors alone or by reversing cystine-glutamate exchange and depriving cells of antioxidant protection. Here we show that precursor, immature and mature oligodendrocytes in the white matter of the cerebellum and corpus callosum exhibit NMDA-evoked currents, mediated by receptors that are blocked only weakly by Mg2+ and that may contain NR1, NR2C and NR3 NMDA receptor subunits. NMDA receptors are present in the myelinating processes of oligodendrocytes, where the small intracellular space could lead to a large rise in intracellular ion concentration in response to NMDA receptor activation. Simulating ischaemia led to development of an inward current in oligodendrocytes, which was partly mediated by NMDA receptors. These results point to NMDA receptors of unusual subunit composition as a potential therapeutic target for preventing white matter damage in a variety of diseases.  相似文献   

11.
Glycine potentiates the NMDA response in cultured mouse brain neurons   总被引:46,自引:0,他引:46  
J W Johnson  P Ascher 《Nature》1987,325(6104):529-531
Transmitters mediating 'fast' synaptic processes in the vertebrate central nervous system are commonly placed in two separate categories that are believed to exhibit no interaction at the receptor level. The 'inhibitory transmitters' (such as glycine and GABA) are considered to act only on receptors mediating a chloride conductance increase, whereas 'excitatory transmitters' (such as L-glutamate) are considered to activate receptors mediating a cationic conductance increase. The best known excitatory receptor is that specifically activated by N-methyl-D-aspartate (NMDA) which has recently been characterized at the single channel level. The response activated by NMDA agonists is unique in that it exhibits a voltage-dependent Mg block. We report here that this response exhibits another remarkable property: it is dramatically potentiated by glycine. This potentiation is not mediated by the inhibitory strychnine-sensitive glycine receptor, and is detected at a glycine concentration as low as 10 nM. The potentiation can be observed in outside-out patches as an increase in the frequency of opening of the channels activated by NMDA agonists. Thus, in addition to its role as an inhibitory transmitter, glycine may facilitate excitatory transmission in the brain through an allosteric activation of the NMDA receptor.  相似文献   

12.
NMDA spikes in basal dendrites of cortical pyramidal neurons   总被引:21,自引:0,他引:21  
Schiller J  Major G  Koester HJ  Schiller Y 《Nature》2000,404(6775):285-289
Basal dendrites are a major target for synaptic inputs innervating cortical pyramidal neurons. At present little is known about signal processing in these fine dendrites. Here we show that coactivation of clustered neighbouring basal inputs initiated local dendritic spikes, which resulted in a 5.9 +/- 1.5 mV (peak) and 64.4 +/- 19.8 ms (half-width) cable-filtered voltage change at the soma that amplified the somatic voltage response by 226 +/- 46%. These spikes were accompanied by large calcium transients restricted to the activated dendritic segment. In contrast to conventional sodium or calcium spikes, these spikes were mediated mostly by NMDA (N-methyl-D-aspartate) receptor channels, which contributed at least 80% of the total charge. The ionic mechanism of these NMDA spikes may allow 'dynamic spike-initiation zones', set by the spatial distribution of glutamate pre-bound to NMDA receptors, which in turn would depend on recent and ongoing activity in the cortical network. In addition, NMDA spikes may serve as a powerful mechanism for modification of the cortical network by inducing long-term strengthening of co-activated neighbouring inputs.  相似文献   

13.
Dual-component NMDA receptor currents at a single central synapse   总被引:2,自引:0,他引:2  
E D'Angelo  P Rossi  J Garthwaite 《Nature》1990,346(6283):467-470
Present thinking about the way that the NMDA (N-methyl-D-aspartate) class of glutamate receptor operates at central synapses relies mainly on information obtained from single-channel and whole-cell recordings from cultured neurons stimulated by exogenous NMDA receptor agonists. The mechanisms that operate in the postsynaptic membrane of a normal neuron following release of the natural transmitter are far less clear. An important problem is that most normal neurons receive many excitatory synapses (10(3)-10(5) per cell) and these synapses are located on slender dendritic elements far away from the somatic recording site, making the study of discrete synaptic events difficult. Typically, when populations of synapses are activated, NMDA receptor-mediated synaptic potentials appear as slowly rising, long-lasting waves superimposed on faster, non-NMDA-receptor potentials. Although believed to be critical for NMDA receptor function, this slow time-course would not be predicted from single-channel kinetics and its origin remains puzzling. We have now analysed the events occurring at the level of a single excitatory synapse using a simple, small, neuron--the cerebellar granule cell--which has an unusually simple glutamatergic input. By applying high-resolution whole-cell recording techniques to these cells in situ, we were able to study the nature of elementary NMDA receptor-mediated synaptic currents. Contrary to expectations, the prominent currents are fast but are followed by slow ones. Both types of current are strongly voltage-dependent but differ subtly in this respect. Furthermore, the currents are absent unless glycine is provided.  相似文献   

14.
Release of endogenous excitatory amino acids from turtle photoreceptors   总被引:10,自引:0,他引:10  
D R Copenhagen  C E Jahr 《Nature》1989,341(6242):536-539
Responses to light are transmitted from photoreceptors to second-order retinal neurons by chemical synapses that may use an excitatory amino acid (EAA) as the neurotransmitter. This hypothesis is based primarily on the pharmacological actions of EAA agonists and antagonists on the membrane potentials and light responses of second-order neurons. But the release of endogenous EAAs, which is a critical criterion for the identification of EAAs as transmitters, has not been demonstrated. Here we report the use of outside-out membrane patches excised from rat hippocampal neurons to detect the release of EAAs from synaptic terminals of isolated turtle photoreceptors. Electrical stimulation of or application of lanthanum chloride to photoreceptors induced an increase in the frequency of opening of 50-pS channels in the patches. These channels were identified as the class of glutamate-activated channels that are also gated by aspartate and NMDA (N-methyl-D-aspartate). In several photoreceptor-patch pairs, spontaneous channel activity was observed near the synaptic terminals. These results provide strong evidence to support the hypothesis that both rods and cones of the turtle use an EAA as their neurotransmitter.  相似文献   

15.
ATP activates damage-sensing neurons (nociceptors) and can evoke a sensation of pain. The ATP receptor P2X3 is selectively expressed by nociceptors and is one of seven ATP-gated, cation-selective ion channels. Here we demonstrate that ablation of the P2X3 gene results in the loss of rapidly desensitizing ATP-gated cation currents in dorsal root ganglion neurons, and that the responses of nodose ganglion neurons to ATP show altered kinetics and pharmacology resulting from the loss of expression of P2X(2/3) heteromultimers. Null mutants have normal sensorimotor function. Behavioural responses to noxious mechanical and thermal stimuli are also normal, although formalin-induced pain behaviour is reduced. In contrast, deletion of the P2X3 receptor causes enhanced thermal hyperalgesia in chronic inflammation. Notably, although dorsal-horn neuronal responses to mechanical and noxious heat application are normal, P2X3-null mice are unable to code the intensity of non-noxious 'warming' stimuli.  相似文献   

16.
G L Westbrook  M L Mayer 《Nature》1987,328(6131):640-643
NMDA (N-methyl-D-aspartate) receptors serve as modulators of synaptic transmission in the mammalian central nervous system (CNS) with both short-term and long-lasting effects. Divalent cations are pivotal in determining this behaviour in that Mg2+ blocks the ion channel in a voltage-dependent manner, and Ca2+ permeates NMDA channels. Zn2+ could also modulate neuronal excitability because it is present at high concentrations in brain, especially the synaptic vesicles of mossy fibers in the hippocampus and is released with neuronal activity. Both proconvulsant and depressant actions of Zn2+ have been reported. We have found that zinc is a potent non-competitive antagonist of NMDA responses on cultured hippocampal neurons. Unlike Mg2+, the effect of Zn2+ is not voltage-sensitive between -40 and +60 mV, suggesting that Zn2+ and Mg2+ act at distinct sites. In addition, we have found that Zn2+ antagonizes responses to the inhibitory transmitter GABA (gamma-aminobutyric acid). Our results provide evidence for an additional metal-binding site on the NMDA receptor channel, and suggest that Zn2+ may regulate both excitatory and inhibitory synaptic transmission in the hippocampus.  相似文献   

17.
Excitatory amino acids act via receptor subtypes in the mammalian central nervous system (CNS). The receptor selectively activated by N-methyl-D-aspartic acid (NMDA) has been best characterized using voltage-clamp and single-channel recording; the results suggest that NMDA receptors gate channels that are permeable to Na+, K+ and other monovalent cations. Various experiments suggest that Ca2+ flux is also associated with the activation of excitatory amino-acid receptors on vertebrate neurones. Whether Ca2+ enters through voltage-dependent Ca2+ channels or through excitatory amino-acid-activated channels of one or more subtype is unclear. Mg2+ can be used to distinguish NMDA-receptor-activated channels from voltage-dependent Ca2+ channels, because at micromolar concentrations Mg2+ has little effect on voltage-dependent Ca2+ channels while it enters and blocks NMDA receptor channels. Marked differences in the potency of other divalent cations acting as Ca2+ channel blockers compared with their action as NMDA antagonists also distinguish the NMDA channel from voltage-sensitive Ca2+ channels. However, we now directly demonstrate that excitatory amino acids acting at NMDA receptors on spinal cord neurones increase the intracellular Ca2+ activity, measured using the indicator dye arsenazo III, and that this is the result of Ca2+ influx through NMDA receptor channels. Kainic acid (KA), which acts at another subtype of excitatory amino-acid receptor, was much less effective in triggering increases in intracellular free Ca2+.  相似文献   

18.
Sensory acuity and motor dexterity deteriorate when human limbs cool down, but pain perception persists and cold-induced pain can become excruciating. Evolutionary pressure to enforce protective behaviour requires that damage-sensing neurons (nociceptors) continue to function at low temperatures. Here we show that this goal is achieved by endowing superficial endings of slowly conducting nociceptive fibres with the tetrodotoxin-resistant voltage-gated sodium channel (VGSC) Na(v)1.8 (ref. 2). This channel is essential for sustained excitability of nociceptors when the skin is cooled. We show that cooling excitable membranes progressively enhances the voltage-dependent slow inactivation of tetrodotoxin-sensitive VGSCs. In contrast, the inactivation properties of Na(v)1.8 are entirely cold-resistant. Moreover, low temperatures decrease the activation threshold of the sodium currents and increase the membrane resistance, augmenting the voltage change caused by any membrane current. Thus, in the cold, Na(v)1.8 remains available as the sole electrical impulse generator in nociceptors that transmits nociceptive information to the central nervous system. Consistent with this concept is the observation that Na(v)1.8-null mutant mice show negligible responses to noxious cold and mechanical stimulation at low temperatures. Our data present strong evidence for a specialized role of Na(v)1.8 in nociceptors as the critical molecule for the perception of cold pain and pain in the cold.  相似文献   

19.
M L Mayer  L Vyklicky  J Clements 《Nature》1989,338(6214):425-427
Responses to the excitatory amino acid N-methyl-D-aspartate (NMDA) are markedly potentiated by nanomolar concentrations of glycine. This is due to the action of glycine at a novel strychnine-resistant binding site with an anatomical distribution identical to that for NMDA receptors, suggesting that the NMDA receptor channel complex contains at least two classes of amino-acid recognition site. Antagonists at the glycine-binding site associated with NMDA receptors act as potent non-competitive antagonists, but do not alter the mean open time or conductance, as estimated by fluctuation analysis. The mechanisms by which glycine acts on NMDA receptors are unknown, but single-channel recording experiments show an increase in opening frequency with no change in mean open time or conductance, suggesting that glycine could regulate transitions to states that are intermediate between binding of NMDA receptor agonists and ion-channel gating. It has been suggested that glycine acts as a co-agonist at the NMDA receptor, and that responses to NMDA cannot be obtained in the complete absence of glycine, but in these experiments the response to NMDA was measured at equilibrium, and it is unlikely that sufficient temporal resolution was achieved to detect rapid alterations in receptor gating. Using a fast perfusion system we find that glycine regulates desensitization at NMDA receptors; this has a major effect on the response to NMDA measured at equilibrium, as would occur with slower applications of agonist. Reduction of NMDA receptor desensitization by glycine provides an example of a novel mechanism for regulation of ion-channel activity.  相似文献   

20.
Interaction with the NMDA receptor locks CaMKII in an active conformation.   总被引:29,自引:0,他引:29  
Calcium- and calmodulin-dependent protein kinase II (CaMKII) and glutamate receptors are integrally involved in forms of synaptic plasticity that may underlie learning and memory. In the simplest model for long-term potentiation, CaMKII is activated by Ca2+ influx through NMDA (N-methyl-D-aspartate) receptors and then potentiates synaptic efficacy by inducing synaptic insertion and increased single-channel conductance of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Here we show that regulated CaMKII interaction with two sites on the NMDA receptor subunit NR2B provides a mechanism for the glutamate-induced translocation of the kinase to the synapse in hippocampal neurons. This interaction can lead to additional forms of potentiation by: facilitated CaMKII response to synaptic Ca2+; suppression of inhibitory autophosphorylation of CaMKII; and, most notably, direct generation of sustained Ca2+/calmodulin (CaM)-independent (autonomous) kinase activity by a mechanism that is independent of the phosphorylation state. Furthermore, the interaction leads to trapping of CaM that may reduce down-regulation of NMDA receptor activity. CaMKII-NR2B interaction may be prototypical for direct activation of a kinase by its targeting protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号