首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分子纳米构筑与功能器件研制是极有意义的研究课题。本文总结了利用分子自组装构筑多层异质纳米结构、有机金属卟啉络合物的隧道电子诱导分子发光和轨道媒介分离作用、生物分子DNA的创造设计和微观结构、光电材料的本征性集成与功能器件研制。重点介绍了作者在相关课题研究方面所做的工作和最新研究结果。  相似文献   

2.
以DNA为模板构筑纳米材料与分子器件   总被引:4,自引:0,他引:4  
Moore定律正面临着挑战,即以硅材料为基础的集成电路元件尺寸正接近它的极限。而分子电子学有望作为一种解决的方案,替代硅电子学来构建更小的分子集成电路。DNA,以其独特的纳米尺度、分子线性结构、物理化学稳定性、力学刚性、自我识别能力以及自组装等优势,正逐步应用于分子电子学的各个领域。研究表明,DNA导电性存在着争议,而在此基础上以DNA为模板构筑纳米材料及分子器件正成为一个新的研究热点。本文在大量文献的基础上试图对以DNA为模板构筑分子导线、分子晶体管、分子计算机以及分子阵列等纳米材料及分子器件进行较为详细地归纳和总结,并对存在的问题和应用前景进行了分析和预测。  相似文献   

3.
由于金属及其化合物纳米粒子具有独特的光学、电子、催化等性质,其成为了纳米材料领域研究的热点。但它们容易发生聚集、表面易被氧化等缺点也大大限制了其应用范围:而通过胶体粒子来稳定这些纳米粒子不仅可以大大提高金属及其化合物纳米粒子的分散性和稳定性,同时也可以利用胶体微球自组装的特性以及特殊的核壳结构来实现这些纳米粒子的规则排列和复合结构的构筑。本文介绍了国内外金属纳米粒子及其化合物功能化的胶体微球的制备的最新进展,并在最后就其发展作了展望。  相似文献   

4.
在过去的十年里纳米科学的首次浪潮澎湃而过。在此期间,国际、国内以及香港的学者已向世人证实他们可以采用“build-up”或“build-down”的办法制造大量的纳米管,纳米线以及纳米团簇,这些努力已经表明,如果纳米结构能够低廉地制造,那我们就会有更丰硕的收获。尺度小于20纳米的结构会展现非经典的性质,这提供给我们一个用全新的想法来制造功能器件的基础。在半导体工业,制造结构尺寸小于70纳米器件的能力允许器件的持续微型化。在下一个10年中,纳米科学和技术的另一次浪潮将可能来临,在这个新时期,科学家和工程师需要展示人们对纳米结构的期待功能以及证实他们的进一步的潜力,拥有在纳米结构实际器件的尺寸、组份,有序和纯度上的良好控制能力将实现人们期望的功能,在本文中,我们将讨论纳米科学和技术在新时期里发展所面对的困难和挑战。一系列新的方法将被讨论。我们还将讨论倘若这些困难能够被克服我们可能会有的收获。  相似文献   

5.
分子电子学   总被引:1,自引:0,他引:1  
作为纳米电子学的一个重要分支,分子电子学在近年来得到了巨大的发展,并成为国际上研究的热点。本文介绍了各种分子器件的制作技术及基本工作原理,回顾了近年来分子电子学的最新进展,展望了分子电子学的未来发展。  相似文献   

6.
针对硅纳米线及其在生物、医学、环境、反恐应用中生物检测的制造需求,通过充分利用硅材料本身的特性,发展传统光刻、腐蚀工艺中的硅纳米线精细控制技术,研究硅纳米线传感界面上有序组装多种生物功能探针(包括蛋白质探针和基因探针)的制造方法,提出一致性良好的硅纳米线的自上而下批量制造方法及其表面生物识别和捕获性能的精确控制制造技术,为高灵敏度、高选择性的硅纳米线生物传感器件的制造及批量化奠定坚实的技术基础,并为基于硅纳米线及相关生物组装的跨尺度制造提供可借鉴的新原理和新方法.  相似文献   

7.
纳米流体是由流体与纳米粒子组成的胶体悬浮物, 与普通固液两相流相比, 其传热性能明显增强. 悬浮在流体中的纳米粒子会受到运动阻力、Brown力、粒子间扩散力、重力等内力或外力的影响, 因而其运动规律极其复杂. 根据纳米流体中粒子和液体介质的受力关系, 建立了纳米流体的格子Boltzmann流动与传热模型, 并用于分析纳米粒子的动态分布.  相似文献   

8.
简要讨论纳米CMOS工艺下集成电路的可制造性设计(DFM)技术.首先讨论纳米CMOS中与制造性有关的工艺和器件问题,然后探讨DFM需要的工艺和器件建模工作.最后对包括有可制造性设计技术的集成电路设计流程和能较好地在大规模集成电路设计环境中开发设计/制造交互界面的有关EDA做简单介绍.  相似文献   

9.
高定向石墨表面一维金纳米粒子链   总被引:1,自引:0,他引:1  
利用真空沉积方法在高定向石墨(HOPG)基底上直接制备了粒径分布较小的金纳米粒子. 超高真空扫描隧道显微镜(STM)研究发现,在74℃退火后,金纳米粒子在HOPG基底上形成了排列均匀的准一维纳米粒子链. 与以往研究不同之处在于,金纳米粒子链并非沿基底台阶排列. 其中一些金纳米粒子能够穿越基底表面的单原子台阶;另外金纳米粒子链的取向决定于金纳米粒子的尺寸. 这一发现为制备由金粒子组成的有序纳米结构开辟了探索途径.  相似文献   

10.
原位法制备无机纳米粒子/聚合物复合材料   总被引:1,自引:0,他引:1  
纳米粒子的尺寸介于体相材料和分子之间, 具有许多独特的物理和化学性质, 近年来在催化、光电子以及生物等领域得到广泛的关注. 为了使纳米粒子更好的展现它们特有的功能, 将其与聚合物复合是行之有效的方法, 这不仅可以稳定纳米粒子, 还可以实现纳米粒子与聚合物之间功能的集成. 但是, 这一思想的实现在很大程度上依赖于纳米粒子与聚合物之间的相容性, 以及如何调节纳米粒子与聚合物之间的相互作用, 使我们得到预期的功能. 因此, 人们发展了许多将纳米粒子复合到聚合物中的方法. 本文主要阐述了近几年我们课题组把原位法和其他方法有机结合, 实现纳米粒子与聚合物的复合, 从而制备了具有不同功能的一维、二维乃至体相纳米粒子/聚合物复合材料. 我们所建立的这些方法最突出的特点是纳米粒子与聚合物之间具有很好的相容性, 可以确保其在聚合物中的均匀分散, 而且聚合物网络结构的存在使纳米粒子更加稳定, 对于更好的体现其功能具有重要意义.  相似文献   

11.
基于氧化镍纳米颗粒薄膜电变色机理的研究,利用LixTaOy薄膜作为Li离子无机固体电解质薄膜,设计和制造了一种NiO/WO3互补型电变色器件,该器件着色态的太阳反射系数为0.15,漂白态为0.60,其响应时间最短可以小于300ms,循环通电的漂白-着色实验结果表明该器件具有相当好的可逆性和稳定性。  相似文献   

12.
树枝聚合物是一类新型聚合物材料。树枝聚合物由芯、支化单元和表面组成,包含大量的空穴,具有高支化的3维结构和纳米尺寸以及独特的电、光、热、力学和流变性能。通过对树枝聚合物结构的功能化设计即在树枝聚合物的芯、支化单元和表面引入确定功能的基团,可使之具有催化、分子识别、能量和电子转移、氧化还原、吸热或放热受体等功能,具有可控制的溶液、热等性能和液晶态,并能广泛应用于电活性和电致发光器件,光化学分子器件(能量和电子转移,非线性光学),太阳能电池,化学传感器,液晶显示,催化剂,超薄膜(层),胶束与胶囊,生物医用和药用,分析和分离等领域。  相似文献   

13.
纳米粒子具有高的表面积,呈现更佳的物理与化学特性,常用于塑橡胶的添加物来改善或增进应用的特性,有许多纳米粒子的制作方法已商用化,激光剥离方式以脉冲能量自物体表面产生纳米粒子,为制作各种纳米粒子尤其组成或晶相复杂的纳米粒子的重要方法。随使用靶材的微结构与晶相,可经由剥离条件的调整获得多晶相的纳米粒子,粒径在50纳米以下同时呈现圆形的外观,纳米粒子的组成由靶材组成,反应性气体与激光能量决定。使用如氧化钛光触媒之还原效果,进一步在纳米粒子表面披覆银粒子,具有核壳结构的纳米粒子具有更多的特性,有更大的应用潜力。  相似文献   

14.
探针阳极氧化是构建纳米结构,制造纳米器件的重要技术之一,本文对该技术中基于原子力显微镜(AFM)的阳极氧化进行了新的研究.通过对氧化加工中微观电场在基底表面分布情况进行模拟,分析了氧化结构的特征与电场分布的关系,通过实验研究分析了不同加工因素对氧化加工的影响.在这些研究基础上利用AFM阳极氧化技术实现了对碳纳米管(CNT)的氧化切割及焊接,为CNT基纳米器件的装配及制备提供了新的技术途径.  相似文献   

15.
向聚合物基底中添加纳米粒子可用来制备聚合物纳米复合材料,而纳米粒子在基底中的分散性和稳定性问题是多年来制约其大规模应用的关键因素.采用聚合物配体链来修饰纳米粒子,是实现对纳米粒子稳定性调节的一种可行方案.在众多接枝聚合物链的纳米粒子中,双峰聚合物刷接枝的纳米粒子在聚合物基底中表现出超强的分散性和稳定性.本文采用分子动力学方法,模拟研究了双峰聚合物链接枝到纳米粒子表面的grafting-to反应过程.模拟研究表明,影响grafting-to反应过程的因素是多重的,包括双峰聚合物链中短链所占的比例、聚合物链的浓度等因素.研究表明,反应前期聚合物链长度影响很微弱,但反应后期长链的反应速率、接枝效率都会明显降低.此外,在低浓度体系中,接枝过程并不受聚合物链长度的影响,遵循"就近原则"接枝;但在高浓度体系中,纳米粒子明显表现出"选择性"地接枝短链的行为.该研究的结论对实现聚合物纳米复合材料性能的精细调控具有一定的指导意义.  相似文献   

16.
利用真空沉积方法在高定向石墨(HOPG)基底上直接制备了粒径分布较小的金纳米粒子.超高真空扫描隧道显微镜(STM)研究发现,在74℃退火后,金纳米粒子在HOPG基底上形成了排列均匀的准一维纳米粒子链.与以往研究不同之处在于,金纳米粒子链并非沿基底台阶排列.其中一些金纳米粒子能够穿越基底表面的单原子台阶;另外金纳米粒子链的取向决定于金纳米粒子的尺寸.这一发现为制备由金粒子组成的有序纳米结构开辟了探索途径.  相似文献   

17.
在微纳米尺度的机电敏感结构表面进行功能分子层修饰,通过与目标靶分子特异性结合,在表面形成Gibbs自由能的变化,由此产生的纳机械表面应力可被结构上集成的机电敏感元件转换成实时电信号输出.首先对固体表面分子层自组装产生纳机械表面应力的机制进行研究,将表面上形成的单分子层(self-assembled monolayer,SAM)按作用原理在纵向(即分子层厚度方向)上分为头基、分子链和尾基三层结构分别进行了基于纳机械敏感实验的原理揭示,在此基础上发明了一种作图法来定量评估和分析自组装分子层对表面能变化的作用.为使分子作用产生纳机械敏感效应在痕量生化分子快速检测识别中得到应用,首次将纵向分子特异性作用和相邻分子间横向作用区分开来,通过不同类型分子间作用的分析和实验验证得到如下结论:横向分子作用是产生表面应力值大小和正负(张应力或压应力)的决定性因素,而分子纵向作用主要是通过对分子层自组装有序性的调节来影响表面应力产生.在对各种横向分子作用机制分析的基础上,提出并用实验验证了分子间氢键作用可产生最高灵敏度的纳机械敏感效应.此后介绍了特异性分子作用产生表面应力的敏感效应在生化痕量快速检测传感器的应用.采用微纳悬臂梁作为敏感效应的转换器,将表面应力转换为悬臂梁弯曲,利用集成在悬臂梁内的压阻器件进行电信号输出.通过在悬臂梁表面金薄膜上修饰巯基双层分子敏感基团,实现了对ppb量级有机磷毒害蒸气的快速检测.为实现敏感分子层长期稳定工作,针对TNT爆炸物分子检测提出并实现了在悬臂梁硅表面直接两次嫁接自组装硅烷基敏感基团,进而解决了传感器对ppt量级TNT检测的长期稳定性问题.通过对传感器电绝缘的有效处理,又实现了对1.5×10-11 mol/m L浓度链霉亲和素的生物溶液在线检测.  相似文献   

18.
一维TiO_2纳米阵列具有直接的电子传输通道,在太阳电池中作为电子传导材料引起了广泛的关注.以水热法制备的金红石相TiO_2纳米阵列作为有机无机杂化钙钛矿太阳电池电子传导支架,系统研究了TiO_2致密层引入对纳米阵列生长和组装器件光电性能的影响;考察了TiO_2纳米棒棒长和TiCl_4水浴处理等对纳米阵列微结构和组装电池光电性能的影响.致密层的引入有利于获得垂直取向TiO_2纳米阵列,纳米棒棒长的优化有利于光生载流子的快速分离和传导,而采用TiCl_4水浴处理TiO_2纳米阵列,不仅增大了纳米阵列的比表面积,有利于吸附更多的钙钛矿晶体和提升电池对光的俘获,同时TiCl_4水浴处理产生的小纳米颗粒有助于填补钙钛矿晶体与纳米阵列间的缝隙,促进更好的界面接触,从而抑制载流子传导过程中的复合,提升电池性能.在引入TiO_2致密层后,进一步采用0.1 mol/L TiCl_4处理的TiO_2纳米阵列组装的电池展现最优的光电性能,其短路电流密度、开路电压、填充因子分别达到22.88 mA/cm~2,1.04 V和63.58%,电池的能量转化效率达到15.11%.  相似文献   

19.
构建内皮祖细胞捕获支架是目前心血管疾病治疗的一个研究热点.利用磁性纳米粒子捕获内皮祖细胞也越来越受到关注,但是单纯的磁性纳米粒子和磁场源地作用相对微弱,本研究引入铁支架作为另一磁响应源,共同作用来提高纳米粒子表面捕获率.首先利用CD34抗体构建了一种定向捕获CD34阳性细胞的功能型磁性纳米粒子,再利用外加磁场将其归巢到铁支架表面.FTIR和TEM结果表明CD34抗体已成功接枝到双羧基PEG包裹的Fe_3O_4纳米粒子上,体外细胞评价证实该纳米粒子不具有细胞毒性.体内动物实验结果表明该Fe_3O_4-PEG@CD34纳米粒子能够特异性识别捕获CD34阳性细胞,并且在外加磁场的作用下能够将其快速归巢到铁支架表面,这为实现支架表面快速内皮化提供了可能.  相似文献   

20.
采用单步化学湿法(超声膜扩散法)制备出了3种体积分数的水基银纳米流体,实验研究了纳米流体横掠新型水滴形微针肋热沉的流动和传热特性.结果表明:不同体积分数下的纳米流体压降差别很小;相同体积流量下,与基液比较,纳米流体进出口压降略有增加,但增加并不明显;与纯水相比,由于表面活性剂的引入增加了流体粘度,相同流量下,纳米流体的压降稍大于纯水值,但最大差距不超过10%.粒子的体积份额对纳米流体对流换热系数影响较大.纳米粒子的存在对换热性能有明显提高,但过高的黏度对纳米流体的强化传热效果有一定的抑制作用.与去离子水相比,当银粒子体积分数达到0.012%后,纳米流体的综合效果才能逐渐体现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号