首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
固定化微生物去除地下水中氯苯研究   总被引:2,自引:0,他引:2  
为探索固定化微生物技术去除地下水氯苯的最佳条件,采用聚乙烯醇(PVA)和海藻酸钠为包埋剂,培养了含氯苯的菌泥驯化培养的微生物,以制备固定化微生物小球,处理地下水中的氯苯.本研究从机械强度,传质性,氯苯降解率等方面综合考虑,利用正交实验确定了制备固定化微生物小球的最佳条件,并对固定化微生物和游离微生物降解氯苯的效果进行了比较.另外,还对固定化微生物降解地下水中氯苯的影响因素进行了探讨.实验结果表明,氯苯初始浓度大于20mg/L,固定化微生物降解氯苯效果好于游离微生物的.当小球粒径为1mm,菌液接种量为8%,氯苯初始浓度为80mg/L,pH值为7.0左右,盐度低于1.5%,控制培养温度为10℃,摇床转速为120r/min时,固定化微生物降解性能较好.  相似文献   

2.
从大连化工厂的活性污泥样品中分离得到1株氯苯降解菌CB-2,该菌株能够以氯苯为唯一碳源进行生长.通过对其形态、生理生化特征分析以及对16SrDNA序列进行同源比较,初步鉴定该菌株为肠杆菌属(Enterobacter).研究了菌株CB-2对氯苯的降解特性,实验结果表明,该菌株对氯苯的最适降解条件为pH=7,温度35℃,摇床转速为120r/min,接种量5%.在最适条件下,氯苯降解率可达82%以上.测定了降解途径中相关酶的活性,表明菌株CB-2降解氯苯是通过邻苯二酚1,2-双加氧酶催化的邻位开环途径进行的.  相似文献   

3.
以海藻酸钠和聚乙烯醇为混合载体,采取包埋法固定化苍白杆菌PW,降解培养基中的芘。在实验中分析了固定化载体浓度对固定化小球机械强度和传质系数的影响;绘制出固定化PW菌和游离菌降解芘的动力学曲线,比较了二者的差异;分析了pH值和温度对PW菌降解芘的影响。研究结果表明:随着海藻酸钠浓度的提高,固定化小球的传质性能变好,机械强度提高;随着聚乙烯醇的浓度的提高,固定化小球的传质性能变差,机械强度提高;在同样的条件下,固定化PW菌降解芘的效果要优于游离菌;固定化PW菌降解芘的最适pH为6.5~7.5,最适温度为30℃左右。  相似文献   

4.
研究硫酸盐还原菌(SRB)固定化小球还原性能的影响因素.采用海藻酸钙包埋法来固定硫酸盐还原菌株,分析不同因素对固定化SRB小球还原硫酸盐效率的影响.实验结果表明,SRB固定化最佳时间是菌株增殖64h;最佳包埋条件为:海藻酸钠4%、菌液浓度30%、CaCl2 溶液浓度4%;小球在氯化钙溶液中的最佳凝胶化时间为4 h;小球的最佳颗粒粒径为1 mm;最佳环境因素是:温度35℃、pH 6.5~7.0、球液配比量1∶10.不同因素下固定化SRB小球对硫酸盐的还原效率最高可达98.76%.  相似文献   

5.
3株细菌降解木质素的条件调控研究   总被引:1,自引:0,他引:1  
采用苯胺蓝和RB亮蓝平板对从三国吴简腐蚀斑中分离得到的3株细菌Acinetobacter sp.B-2,Pandoraea sp.B-6和Novosphingobium sp.B-7进行脱色试验,考察这3株细菌在液体培养条件下的木质素降解性能,并对其木质素降解条件的调控进行研究,初步确定这3株菌适宜的降解条件。研究结果表明:这3株细菌具有使苯胺蓝和RB亮蓝染料脱色的能力,能够产木质素降解酶;这3株细菌的木质素降解速率较快,第5天木质素的降解基本趋于稳定;菌株适宜的降解条件如下:对Acinetobacter sp.B-2,氮源为硝酸铵,氮源浓度为0.01 mol/L,培养温度为30℃,初始pH=7.0,摇床转速为120 r/min;对Pandoraea sp.B-6,氮源为磷酸氢二铵,氮源浓度为0.03 mol/L,培养温度为30℃,初始pH=7.0,摇床转速为120 r/min;对Novosphingobium sp.B-7,氮源为硝酸铵,氮源浓度为0.01 mol/L,培养温度为30℃,初始pH为5.0,摇床转速为120 r/min。在适宜的降解条件下,这3株细菌第3天的木质素降解率均可达到30%~35%。  相似文献   

6.
为了应对石油污染问题,研究获得高效降解石油烃菌株.分析高效降解菌株H4的降解性能,确定了H4菌株对环己烷的最佳降解条件,在环己烷初始质量浓度为2.49 g/L,培养温度为28℃,pH为6,液体培养基菌体浓度约为9×105个/mL,液体培养基体积为100 mL,摇床转速为120 r/min的条件下,环己烷96h的降解率为70.1%.  相似文献   

7.
在相同的环境条件下,研究以聚乙烯醇(PVA)与海藻酸钠(SA)以及聚丙烯酰胺(PAM)与海藻酸钠为材料制成的固定化微生物小球对水中石油的降解效果.结果表明;在七天的培养实验中,以PVA为主要材料制成的固定化微生物小球对石油的降解率为80.09%;以PAM为主要材料对石油的降解率为74.40%.以聚乙烯醇与海藻酸钠制成的微生物小球对石油的降解效果要优于聚丙烯酰胺与海藻酸钠.  相似文献   

8.
以聚乙烯醇(PVA)为载体,人工沸石为吸附剂,采用包埋法固定硝化细菌,通过实验发现制备固定化小球最优组合为:质量浓度海藻酸钠1.5%,硼酸溶液4%,PVA 6%,人工沸石2%,此时小球成球效果较好,有合适的机械强度及传质性能.用此工艺制备的固定化小球,在水力停留时间15h,初始pH 8.0,溶解氧浓度5.0 mg/L的...  相似文献   

9.
介孔SiO2固定化漆酶降解2,4DCP   总被引:1,自引:0,他引:1  
以M-NH2-SiO2为载体,戊二醛为交联剂制备固定化漆酶,研究2,4-DCP(2,4-二氯苯酚)浓度、溶液酸度、温度对固定化漆酶降解2,4-DCP的影响.结果表明,固定化漆酶降解2,4-DCP最佳条件为:当2,4-DCP质量浓度为5mg.L-1,溶液pH为5.5,温度为30℃时,降解去除率为42.28%.固定化漆酶具有最大活性时的溶液pH值相比于自由酶的最佳pH向碱性偏移;与自由漆酶相比,固定化漆酶有良好的稳定性和重复使用性.  相似文献   

10.
以海藻酸钠为包埋载体,活性炭为添加材料,对沼泽红假单胞菌Rhodopseudomonas palustris PSB-1D进行固定化,通过正交试验确定固定化微生物小球的最佳制备条件:活性炭添加量为1%,海藻酸钠质量分数为3%,包埋菌体与包埋材料的质量比为1/20。在最佳条件下,微生物小球培养7 d后对2-氯苯酚(2-CP)的降解率为72.6%。对比研究微生物小球和游离细菌的降酚效果。将微生物小球引入序批式好氧生物反应器(SBR)工艺中,分别研究小球投加量、曝气时间、曝气量对生物反应器降解2-氯苯酚效果的影响。试验结果表明:微生物小球对2-CP的降解率较游离细菌有明显提高。在黑暗好氧条件下,有效容积为5 L的固定化生物反应器对2-CP模拟废水降解处理的最佳稳定工艺条件为:微生物小球投加量为20 g,曝气时间10 h,曝气量为100 L/h。在此条件下,经过连续30个周期的测定,微生物小球对2-CP的平均去除率始终保持在65%左右。  相似文献   

11.
用海藻酸钠/壳聚糖/活性炭制备的微胶囊具有生物半透膜特性和很好的强度;以海藻酸钠/壳聚糖/活性炭微胶囊包裹一株从活性污泥中筛选的对氯苯酚优势降解菌;根据废水处理的要求和流体动力学原理设计了气升式内循环生物流化床的中试设备;实验表明,以制备的微胶囊作为气升式内循环生物微胶囊流化床中载体处理对氯苯酚废水处理最适宜条件:pH=7.0,温度为30-35℃,处理120mg/L的对氯苯酚废水时,微胶囊最佳载体投入量为15%,通气量为120L/h。  相似文献   

12.
固定化细菌降解苯酚的研究   总被引:1,自引:0,他引:1  
周运听 《江西科学》2008,26(4):572-575
通过驯化、筛选和富集,从温州某印染厂的生化曝气池下水道的活性污泥中分离得到一株高效降解苯酚的细菌,初步确定为假单胞菌属(Pseudomonas sp.)。该菌株能以苯酚为唯一碳源。最高耐酚浓度为1000mg/L。并采用海藻酸钙对该菌进行固定化。同时研究了不同条件如培养温度、pH、转速、供氧等对固定化细胞降解苯酚的影响。实验结果表明:最佳温度35℃、pH5.0、转速120r/min,在有氧条件下,24h内对100mg/L苯酚降解率可达99%以上。  相似文献   

13.
考察了门多萨假单胞菌DS04-T对Poly(3HB-co-4HB)的降解行为。以Poly(3HB-co-4HB)为唯一碳源,分别考察培养时间、培养温度、摇床转速、装液量、培养基起始pH值、接种量等因素对降解行为的影响。结合正交试验优化获得了菌株的最佳产酶条件:培养时间为28h,培养温度为30℃,培养基初始pH值为7.3,摇床转速为150r/min,培养基装液量为120mL(250mL三角瓶),接种量为1.5%(体积分数),此条件下菌株对Poly(3HB-co-4HB)的降解酶活力可达(26.2±0.7)U.mL-1。  相似文献   

14.
本实验采用悬浮聚合法制备苯乙烯-二乙烯苯-马来酸酐(St—DVB—cBA)三元共聚高分子微球(0.26~0.33mm),并用其作为脂肪酶的载体,进行脂肪酶的固定化。实验结果表明,制备固定化脂肪酶的相对最佳条件:脂肪酶加入量2.0mg,载体50mg,反应温度30℃E,反应时间6h,pH=7.0,最高固载率可达80.02%,酶活4150U/g载体。所制得的酶最佳催化条件:反应温度40℃,pH=7.38。  相似文献   

15.
从受石油污染的海洋沉积物中分离得到1株能以柴油为唯一碳源生长的菌株LHOD-2,通过形态特征、生理生化及16SrDNA序列分析,初步鉴定菌株LHOD-2属于埃氏假交替单胞菌(Pseudoalteromonas espejiana).利用聚氨酯泡沫为载体制备固定化菌,并对其降解特性进行考察.实验结果表明,菌株LHOD-2的最佳生长降解条件为温度25~30℃,pH 7.0~8.0,盐度(体积分数)3%~3.5%,转速150r/min.在最佳条件下,LHOD-2对800mg/L柴油在120h内的降解率达到85%(质量分数).聚氨酯泡沫载体具有大孔网状结构,利于菌株生长和传质,固定化菌降解柴油的速率明显高于游离菌.  相似文献   

16.
微生物固定法降解含聚废水的最佳条件   总被引:2,自引:0,他引:2  
利用从含聚废水中分离纯化得到的单一菌株R4-1,R4-2,R4-3,R4-5,H4-3,以海藻酸钠-PVA为包埋剂,采用包埋固定法对5种菌的混合菌进行固定化实验.通过单因素实验和正交实验,系统考察了湿菌体与包埋剂的体积比、氯化钙质量分数、硼酸质量分数和交联时间等因素对聚丙烯酰胺降解率的影响.实验得到微生物固定法降解含聚废水的最佳制备条件:4%海藻酸钠,4%的PVA,湿菌体与包埋剂体积比1∶1,2%氯化钙,3%硼酸,分段交联时间为氯化钙4h后硼酸20h.湿菌体与包埋剂的体积比对聚丙烯酰胺降解率的影响十分显著.追加实验最佳制备条件,得到微生物固定化颗粒对含聚废水的降解率可达到83.1%.  相似文献   

17.
对白蜡多年卧孔菌最佳发酵培养条件进行了探索,其摇床发酵最优培养条件为:葡萄糖37.7 g/L,酵母粉8.3g/L,磷酸二氢钾6.31 g/L;培养温度30℃,500 mL三角瓶装液量200 mL,初始pH值为6,摇床转速180r/min,10%接种量培养7d,最大产量达到15.46 g/L.发酵罐最优培养条件为:葡萄糖37.7 g/L,酵母粉8.3g/L,磷酸二氢钾6.31 g/L,培养温度30℃,装液量6L/10L,初始pH为6,搅拌速度380 r/min,10%接种量培养120h,最大产量达到19.47 g/L.  相似文献   

18.
选用乙醇作为提取溶剂,对高粱中总黄酮进行提取,研究乙醇浓度、浸提温度、浸提时间、料液比对高粱黄酮提取率的影响.并通过单因素及正交试验,确定了高粱黄酮的最佳提取工艺:乙醇浓度为65%,80℃下浸提2 h,料液比为6∶100.此工艺下提取的高粱黄酮含量为0.54%.  相似文献   

19.
以绞股蓝全草为原料,采用微波和超声波对绞股蓝总皂甙提取进行了对比研究,两种方法分别采用单因素实验及正交试验,探讨了优化提取条件和参数.结果表明:微波提取的优化工艺参数,料液比为1g:25mL,微波处理时间为11min,微波功率为400W,总皂甙提取率为7.59%;超声波提取的优化工艺参数,料液比为1g:25mL,提取温度为70℃,超声波处理时间为20min,超声波功率为400W,总皂甙提取率为8.01%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号