首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 915 毫秒
1.
本文主要通过分析钢坯在炉内氧化铁皮的形成机理,分析找出影响钢坯产生氧化烧损的主要因素,提出利用控制加热炉炉内气氛、降低加热炉的最高炉温和降低钢坯的加热时间等方法来减少钢坯在炉内的氧化烧损.结合高棒车间投产初期加热炉炉温控制所存在的问题,优化得到高棒车问的加热制度,并严格控制加热炉各段的空气过量系数,确实有效的降低高棒车间加热炉的氧化烧损.同时制定HRB500E加钒钢种的加热制度.  相似文献   

2.
根据连续式轧钢加热炉的特点和工艺条件,讨论了将拉钢速率P、出炉钢坯表面温度、烟气残氧量的检测数据与加热炉燃烧过程控制相结合的方案,现场实际应用结果表明,该方案是可行的,对降低钢坯烧损、降低油耗、提高成材率、减少环境污染等有重要意义.  相似文献   

3.
根据连续式轧钢加热炉的特点和工艺条件,讨论了将拉钢速率P、出炉钢坯表面温度、烟气残氧量的检测数据与加热炉燃烧过程控制相结合的方案,现场实际应用结果表明,该方案是可行的,对降低钢坯烧损、降低油耗、提高成材率、减少环境污染等有重要意义。  相似文献   

4.
王林 《科技信息》2013,(20):384-384
本文针对620mm带钢蓄热式加热炉燃烧系统存在的问题,对蓄热式烧嘴、换向装置进行了技术改进。提高了钢坯的加热质量,降低了氧化烧损率,取得了良好的实际效果和经济效益。  相似文献   

5.
对于加热炉的燃烧自动控制系统,在采用双交叉限幅控制的基础上,为确保系统运行在最佳燃烧状态,引入了残氧量的模糊预测控制.  相似文献   

6.
为了研究在冶金轧钢加热炉富氧燃烧条件下炉内钢坯的氧化状况,自行设计搭建了可控气氛钢坯传热传质过程实验平台,研究富氧燃烧气氛对钢坯氧化传质的影响规律及不同温度下氧化层的形貌特征。结果表明:钢坯的氧化过程可以分为快速氧化阶段和慢速氧化阶段。在高温环境中,随着氧化温度的提高,CO2和H2 O的浓度变化对钢坯氧化的影响逐渐加强,随着CO2和H2 O浓度的提高,钢坯的氧化烧损程度也变得越来越严重。钢坯氧化层主要是由Fe3 O4和FeO组成。  相似文献   

7.
蓄热式燃气加热炉由于采用换向燃烧,烟气蓄热方式,燃烧充分,余热回收率高达90%以上。故能源利用率高,烧损小,能够有效降低生产成本,减少环境污染。沙景大盘卷生产线采用蓄热式步进梁加热炉,以高炉煤气作燃料,设计能力为200t/h(冷装)。由于炉体较大,加热炉采用双步进梁形式以灵活控制坯料进出,以满足后续工序需求。  相似文献   

8.
针对低负荷下蓄热式加热炉燃烧性能下降的问题,以某钢厂蓄热式加热炉为研究对象,利用软件Fluent建立炉内气体流动、传热及燃烧过程数学模型。炉内气体的流动采用标准k-ε模型计算,燃烧过程的模拟采用混合分数/PDF模型,辐射换热采用DO模型计算。通过所建立的数学模型计算低负荷时,比例控制和脉冲控制2种情况下,炉内气体流动、气体体积分数及温度的分布。计算结果表明:在低负荷下,脉冲控制有利于加强煤气与空气的混合,提高煤气燃烧速率,防止O_2在钢坯表面的聚集,有利于减小钢坯的氧化烧损,提高钢坯表面热流沿炉宽方向分布的均匀性。  相似文献   

9.
加热炉燃烧系统残氧量的模糊预测控制   总被引:1,自引:0,他引:1  
对于加热炉的燃烧自动控制系统,在采用双交叉限幅控制的基础上,为确保系统运行在最佳燃烧状态,引入了残氧量的模糊预测控制。  相似文献   

10.
步进梁式加热炉内的板坯温度场数值模拟   总被引:16,自引:0,他引:16  
建立了三段步进梁式加热炉内加热的板坯物理模型和数学模型.用全隐式有限差分法对数学模型进行了离散化,同时运用软件工程的理论,编制了加热炉内板坯温度场计算软件.计算结果表明,在保证板坯加热质量的前提下,提高加热炉预热段温度、板坯入炉温度和炉气黑度有利于提高加热效率,缩短板坯在加热炉内的加热时间,降低板坯氧化烧损量和延长炉子寿命.  相似文献   

11.
针对黑体定向辐射技术节能的机理问题,以实验室规模具有中间辐射体的室状加热炉为研究对象,建立了具有中间辐射体的物理模型,以CFD商业计算软件Fluent建立平台计算黑体定向辐射条件下的气体流动、传热、燃烧的三维耦合数学模型,并根据实验结果对数学模型进行验证.研究结果表明:中间辐射体的加入改变了炉体燃烧室内的流动情况及炉墙对钢坯固体辐射的比表面积,分别从气体辐射及固体辐射角度增强了钢坯表面辐射换热强度,燃烧温度降低20K左右,钢坯加热速度提升16.7%,钢坯表面最高温度提升40K.加热效率的提升带来了更好的节能效果.  相似文献   

12.
扼要介绍了一种新型铝型材挤压模具箱式加热炉.在相同试验条件下,与传统电阻式铝型材模具加热炉进行性能试验比较,分别记录两种加热炉在升温与保温过程中温控曲线的变化,及所需的能耗和两种模具炉在保温过程中的热量散失情况.研究结果表明:模具箱式加热炉相比传统模具加热炉,加热效率提高约50%,耗电量降低约57%.模具箱式加热炉具有传热效率高、隔热性能强、加热均匀性好、安全系数高、模具使用寿命延长以及模具损坏率降低等优点,在铝型材加工行业具有较好的应用及推广价值.  相似文献   

13.
将高温低氧燃烧技术(High Temperature Air Combustion,简称HTAC)应用于火筒式油田加热炉,解决其炉膛换热面受热不均的问题,并对HTAC技术在火筒式油田加热炉上应用相关的热工特性进行了实验研究。结果表明:采用烟气再循环方式可有效实现高温低氧燃烧,且将氧浓度控制在10%-13%范围内较为适宜;采用HTAC技术后,加热炉炉膛内不存在明显的局部高温区,炉膛周向和轴向换热的均匀性均大幅改善;当加热炉负荷降低至额定负荷的60%以下时,炉内轴向换热的均匀性明显恶化,但周向换热的均匀性基本不受影响。  相似文献   

14.
高温低氧燃烧技术及其高效低污染特性分析   总被引:2,自引:1,他引:1  
研究了一种高温低氧燃烧新技术,即采用蓄热室,预热助燃剂使其温度达到800℃以上;采用分级燃烧及炉内部分烟气回流的方法,使燃烧区氧体积分数降低至15%以下.分析结果表明该燃烧技术具有显著的节能、低污染特性,与未采取任何废热回收措施的传统燃烧技术相比,可实现节能60%以上,CO2排放量减少60%以上,NOx排放浓度低于30~50g/t.  相似文献   

15.
蓄热式轧钢加热炉的发展及其优缺点   总被引:1,自引:0,他引:1  
蓄热式燃烧技术(HATC)被誉为21世纪的关键技术之一,它经历了两个重要的发展阶段而趋向成熟,此技术应用在轧钢加热炉上称为蓄热式轧钢加热炉。从蓄热式燃烧技术的发展状况入手,介绍了蓄热式轧钢加热炉工作原理和类型,分析了蓄热式轧钢加热炉的优缺点。  相似文献   

16.
蓄热式轧钢加热炉的发展及其优缺点   总被引:1,自引:0,他引:1  
蓄热式燃烧技术(HATC)被誉为21世纪的关键技术之一,它经历了两个重要的发展阶段而趋向成熟,此技术应用在轧钢加热炉上称为蓄热式轧钢加热炉.从蓄热式燃烧技术的发展状况入手,介绍了蓄热式轧钢加热炉工作原理和类型,分析了蓄热式轧钢加热炉的优缺点.  相似文献   

17.
首先描述了在我国利用计算机进行节能的紧迫性和潜力,接着对燃烧优化的控制参数进行了探讨,叙述了燃烧优化对汽包水位、汽包压力、烟气含氧量、炉膛负压、蒸汽温度及锅炉热效率的控制要求,然后提出了几种燃烧控制模型,如风煤比控制、风煤比-氧量控制、风汽比控制、炉温信号控制、炉内微压波动控制等,最后提出了燃烧优化控制原则性方案.  相似文献   

18.
高温空气燃烧技术改造均热炉方案研究   总被引:3,自引:0,他引:3  
系统研究了高温空气燃烧技术改造均热炉的各种方案 .提出这种新型燃烧技术必须充分考虑系统布置、炉膛结构、炉内烟气流动及传热过程、工件加热工艺过程等因素 .通过大量的数值模拟试验 ,发现在各种改造方案的入炉热量与原均热炉相等的情况下 ,当空气、燃气温度分别被预热到 12 73K和 10 73K时 ,炉内的最高温度相对较低 ,而炉内平均温度相对较高 ;温度分布不均匀系数Rtu从 33.18降到了 18.0 0左右 .在空气预热温度相同情况下 ,燃气预热温度越高 ,NOx 排放量越大 .最后 ,提出了均热炉燃烧系统的改造方案 ,并进行了非稳态燃烧过程数值模拟研究 .  相似文献   

19.
影响阳极焙烧炉热耗的主要因素   总被引:4,自引:0,他引:4  
基于法国SETRUM公司的焙烧炉的热平衡数据,通过对其中的各个热收入项和热支出项进行分析,总结出沥青挥发充分燃烧与否、固体蓄热回收(空气预热)程度、漏风量大小、炉体散热情况和自动控制技术是影响焙烧炉的热耗的五大因素。对这些影响因素的存在原因进行深入的探讨,从炉子设计和运行的角度提出了解决的办法和建议。  相似文献   

20.
中原油田东濮老区进入高含水期,为解决地面集输系统能耗高、效率低、安全风险大的问题,以文卫油区为试验区块开展了高含水原油常温集输技术研究.根据地面集输系统现状,经过室内实验、理论分析和现场试验,形成了以"常温输送安全技术界限、纳米降凝剂和低温破乳剂处理工艺、集输管网优化工艺"为主体的中原油田东濮老区高含水原油常温集输技术系列.在文卫油区集成应用后,撤减单井加热炉67台、计量站加热炉28台,每年可减少天然气用量197.1×104 m3、创效612.2万元,有效保障了油田地面集输系统安全高效、绿色低碳运行,取得了显著的社会经济效益.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号